Suppr超能文献

基于深度学习的肺部超声图像胸腔积液自动分类在呼吸病理诊断中的应用。

Automatic deep learning-based pleural effusion classification in lung ultrasound images for respiratory pathology diagnosis.

机构信息

School of Clinical Sciences, Queensland University of Technology, Gardens Point Campus, 2 George St, Brisbane 4000, QLD, Australia.

School of Clinical Sciences, Queensland University of Technology, Gardens Point Campus, 2 George St, Brisbane 4000, QLD, Australia; Centre for Biomedical Technologies (CBT), Queensland University of Technology, Brisbane, Queensland, Australia.

出版信息

Phys Med. 2021 Mar;83:38-45. doi: 10.1016/j.ejmp.2021.02.023. Epub 2021 Mar 8.

Abstract

Lung ultrasound (LUS) imaging as a point-of-care diagnostic tool for lung pathologies has been proven superior to X-ray and comparable to CT, enabling earlier and more accurate diagnosis in real-time at the patient's bedside. The main limitation to widespread use is its dependence on the operator training and experience. COVID-19 lung ultrasound findings predominantly reflect a pneumonitis pattern, with pleural effusion being infrequent. However, pleural effusion is easy to detect and to quantify, therefore it was selected as the subject of this study, which aims to develop an automated system for the interpretation of LUS of pleural effusion. A LUS dataset was collected at the Royal Melbourne Hospital which consisted of 623 videos containing 99,209 2D ultrasound images of 70 patients using a phased array transducer. A standardized protocol was followed that involved scanning six anatomical regions providing complete coverage of the lungs for diagnosis of respiratory pathology. This protocol combined with a deep learning algorithm using a Spatial Transformer Network provides a basis for automatic pathology classification on an image-based level. In this work, the deep learning model was trained using supervised and weakly supervised approaches which used frame- and video-based ground truth labels respectively. The reference was expert clinician image interpretation. Both approaches show comparable accuracy scores on the test set of 92.4% and 91.1%, respectively, not statistically significantly different. However, the video-based labelling approach requires significantly less effort from clinical experts for ground truth labelling.

摘要

肺部超声(LUS)成像作为一种即时床边诊断肺部疾病的即时护理诊断工具,已被证明优于 X 射线,与 CT 相当,能够更早、更准确地实时诊断。其广泛应用的主要限制是对操作人员的培训和经验的依赖。COVID-19 的肺部超声表现主要反映为肺炎模式,胸腔积液不常见。然而,胸腔积液很容易检测和定量,因此它被选为这项研究的主题,该研究旨在开发一种用于解释胸腔积液的 LUS 的自动化系统。在皇家墨尔本医院收集了一个 LUS 数据集,其中包含 70 名患者的 623 个视频,其中包含 99,209 个 2D 超声图像,使用相控阵换能器。遵循了一个标准化的协议,该协议涉及扫描六个解剖区域,为呼吸病理的诊断提供肺部的完全覆盖。该协议与使用空间变换网络的深度学习算法相结合,为基于图像的自动病理分类提供了基础。在这项工作中,深度学习模型分别使用基于帧和基于视频的地面实况标签,通过有监督和弱监督的方法进行训练。参考是专家临床医生的图像解释。两种方法在测试集上的准确率分别为 92.4%和 91.1%,都具有可比性,没有统计学上的显著差异。然而,基于视频的标记方法需要临床专家在标记地面实况时付出的努力明显减少。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验