Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
Med Phys. 2021 Jun;48(6):2906-2919. doi: 10.1002/mp.14830. Epub 2021 Apr 13.
Recent studies have demonstrated a lack of reproducibility of radiomic features in response to variations in CT parameters. In addition, reproducibility of radiomic features has not been well established in clinical datasets. We aimed to investigate the effects of a wide range of CT acquisition and reconstruction parameters on radiomic features in a realistic setting using clinical low dose lung cancer screening cases. We performed univariable and multivariable explorations to consider the effects of individual parameters and the simultaneous interactions between three different acquisition/reconstruction parameters of radiation dose level, reconstructed slice thickness, and kernel.
A cohort of 89 lung cancer screening patients were collected that each had a solid lung nodule >4mm diameter. A computational pipeline was used to perform a simulation of dose reduction of the raw projection data, collected from patient scans. This was followed by reconstruction of raw data with weighted filter back projection (wFBP) algorithm and automatic lung nodule detection and segmentation using a computer-aided detection tool. For each patient, 36 different image datasets were created corresponding to dose levels of 100%, 50%, 25%, and 10% of the original dose level, three slice thicknesses of 0.6 mm, 1 mm, and 2 mm, as well as three reconstruction kernels of smooth, medium, and sharp. For each nodule, 226 well-known radiomic features were calculated at each image condition. The reproducibility of radiomic features was first evaluated by measuring the intercondition agreement of the feature values among the 36 image conditions. Then in a series of univariable analyses, the impact of individual CT parameters was assessed by selecting subsets of conditions with one varying and two constant CT parameters. In each subset, intraparameter agreements were assessed. Overall concordance correlation coefficient (OCCC) served as the measure of agreement. An OCCC ≥ 0.9 implied strong agreement and reproducibility of radiomic features in intercondition or intraparameter comparisons. Furthermore, the interaction of CT parameters in impacting radiomic feature values was investigated via ANOVA.
All included radiomic features lacked intercondition reproducibility (OCCC < 0.9) among all the 36 conditions. Out of 226 radiomic features analyzed, only 17 and 18 features were considered reproducible (OCCC ≥ 0.9) to dose and kernel variation, respectively, within the corresponding condition subsets. Slice thickness demonstrated the largest impact on radiomic feature values where only one to five features were reproducible at a few condition subsets. ANOVA revealed significant interactions (P < 0.05) between CT parameters affecting the variability of >50% of radiomic features.
We systematically explored the multidimensional space of CT parameters in affecting lung nodule radiomic features. Univariable and multivariable analyses of this study not only showed the lack of reproducibility of the majority of radiomic features but also revealed existing interactions among CT parameters, meaning that the effect of individual CT parameters on radiomic features can be conditional upon other CT acquisition and reconstruction parameters. Our findings advise on careful radiomic feature selection and attention to the inclusion criteria for CT image acquisition protocols within the datasets of radiomic studies.
最近的研究表明,在 CT 参数变化的情况下,放射组学特征的可重复性较差。此外,放射组学特征的可重复性在临床数据集尚未得到很好的建立。我们旨在使用临床低剂量肺癌筛查病例,在真实环境中研究广泛的 CT 采集和重建参数对放射组学特征的影响。我们进行了单变量和多变量探索,以考虑单个参数的影响以及辐射剂量水平、重建层厚和内核三个不同采集/重建参数之间的同时相互作用。
收集了 89 例肺癌筛查患者的队列,每个患者均有直径大于 4mm 的实性肺结节。使用计算管道对来自患者扫描的原始投影数据进行剂量降低模拟。然后,使用加权滤波反投影(wFBP)算法对原始数据进行重建,并使用计算机辅助检测工具自动进行肺结节检测和分割。对于每个患者,对应于原始剂量水平的 100%、50%、25%和 10%、三个层厚(0.6mm、1mm 和 2mm)以及三个重建核(平滑、中等和锐利),创建了 36 个不同的图像数据集。对于每个结节,在每个图像条件下计算了 226 个已知的放射组学特征。首先通过测量 36 个图像条件之间特征值的条件间一致性来评估放射组学特征的可重复性。然后,在一系列单变量分析中,通过选择一个变化和两个恒定 CT 参数的条件子集来评估单个 CT 参数的影响。在每个子集中,评估了参数内的一致性。整体一致性相关系数(OCCC)用作一致性的度量。OCCC≥0.9 表示在条件间或参数内比较中放射组学特征具有很强的一致性和可重复性。此外,通过方差分析研究了 CT 参数在影响放射组学特征值方面的相互作用。
所有包含的放射组学特征在所有 36 个条件之间都缺乏条件间的可重复性(OCCC<0.9)。在分析的 226 个放射组学特征中,仅在相应的条件子集中,有 17 个和 18 个特征分别被认为对剂量和核变化具有可重复性(OCCC≥0.9)。层厚对放射组学特征值的影响最大,在少数几个条件子集中只有一个到五个特征具有可重复性。方差分析显示,影响>50%放射组学特征值的 CT 参数之间存在显著的相互作用(P<0.05)。
我们系统地研究了 CT 参数在影响肺结节放射组学特征的多维空间。本研究的单变量和多变量分析不仅表明大多数放射组学特征缺乏可重复性,而且还揭示了 CT 参数之间存在相互作用,这意味着单个 CT 参数对放射组学特征的影响可能取决于其他 CT 采集和重建参数。我们的研究结果建议在放射组学研究的数据集中,仔细选择放射组学特征并注意 CT 图像采集协议的纳入标准。