Suppr超能文献

基于CT的影像组学列线图用于术前预测胃腺癌肿瘤组织学分级的开发与验证

Development and validation of a CT-based radiomics nomogram for preoperative prediction of tumor histologic grade in gastric adenocarcinoma.

作者信息

Huang Jia, Yao Huasheng, Li Yexing, Dong Mengyi, Han Chu, He Lan, Huang Xiaomei, Xia Ting, Yi Zongjian, Wang Huihui, Zhang Yuan, He Jian, Liang Changhong, Liu Zaiyi

机构信息

Graduate College, Shantou University Medical College, Shantou 515041, China.

Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.

出版信息

Chin J Cancer Res. 2021 Feb 28;33(1):69-78. doi: 10.21147/j.issn.1000-9604.2021.01.08.

Abstract

OBJECTIVES

To develop and validate a radiomics nomogram for preoperative prediction of tumor histologic grade in gastric adenocarcinoma (GA).

METHODS

This retrospective study enrolled 592 patients with clinicopathologically confirmed GA (low-grade: n=154; high-grade: n=438) from January 2008 to March 2018 who were divided into training (n=450) and validation (n=142) sets according to the time of computed tomography (CT) examination. Radiomic features were extracted from the portal venous phase CT images. The Mann-Whitney U test and the least absolute shrinkage and selection operator (LASSO) regression model were used for feature selection, data dimension reduction and radiomics signature construction. Multivariable logistic regression analysis was applied to develop the prediction model. The radiomics signature and independent clinicopathologic risk factors were incorporated and presented as a radiomics nomogram. The performance of the nomogram was assessed with respect to its calibration and discrimination.

RESULTS

A radiomics signature containing 12 selected features was significantly associated with the histologic grade of GA (P<0.001 for both training and validation sets). A nomogram including the radiomics signature and tumor location as predictors was developed. The model showed both good calibration and good discrimination, in which C-index in the training set, 0.752 [95% confidence interval (95% CI): 0.701-0.803]; C-index in the validation set, 0.793 (95% CI: 0.711-0.874).

CONCLUSIONS

This study developed a radiomics nomogram that incorporates tumor location and radiomics signatures, which can be useful in facilitating preoperative individualized prediction of histologic grade of GA.

摘要

目的

开发并验证一种用于术前预测胃腺癌(GA)肿瘤组织学分级的影像组学列线图。

方法

这项回顾性研究纳入了2008年1月至2018年3月间592例经临床病理确诊的GA患者(低级别:n = 154;高级别:n = 438),根据计算机断层扫描(CT)检查时间将其分为训练集(n = 450)和验证集(n = 142)。从门静脉期CT图像中提取影像组学特征。采用曼-惠特尼U检验和最小绝对收缩和选择算子(LASSO)回归模型进行特征选择、数据降维和影像组学特征构建。应用多变量逻辑回归分析来开发预测模型。将影像组学特征和独立的临床病理危险因素纳入并呈现为影像组学列线图。通过校准和鉴别评估列线图的性能。

结果

包含12个选定特征的影像组学特征与GA的组织学分级显著相关(训练集和验证集的P均<0.001)。开发了一种以影像组学特征和肿瘤位置作为预测因子的列线图。该模型显示出良好的校准和鉴别能力,其中训练集的C指数为0.752 [95%置信区间(95%CI):0.701 - 0.803];验证集的C指数为0.793(95%CI:0.711 - 0.874)。

结论

本研究开发了一种结合肿瘤位置和影像组学特征的影像组学列线图,可有助于促进GA组织学分级的术前个体化预测。

相似文献

引用本文的文献

本文引用的文献

2
The 2019 WHO classification of tumours of the digestive system.2019年世界卫生组织消化系统肿瘤分类。
Histopathology. 2020 Jan;76(2):182-188. doi: 10.1111/his.13975. Epub 2019 Nov 13.
3
The eradication of Helicobacter pylori to prevent gastric cancer: a critical appraisal.根除幽门螺杆菌预防胃癌:批判性评价。
Expert Rev Gastroenterol Hepatol. 2019 Jan;13(1):17-24. doi: 10.1080/17474124.2019.1542299. Epub 2018 Nov 13.
8
Prognostic value of differentiation status in gastric cancer.胃癌分化状态的预后价值。
BMC Cancer. 2018 Sep 3;18(1):865. doi: 10.1186/s12885-018-4780-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验