Suppr超能文献

基于磁共振成像放射组学的机器学习对高级别胶质瘤患者疾病进展的预测价值。

Predictive value of magnetic resonance imaging radiomics-based machine learning for disease progression in patients with high-grade glioma.

作者信息

Li Zhibin, Chen Li, Song Ying, Dai Guyu, Duan Lian, Luo Yong, Wang Guangyu, Xiao Qing, Li Guangjun, Bai Sen

机构信息

Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.

Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.

出版信息

Quant Imaging Med Surg. 2023 Jan 1;13(1):224-236. doi: 10.21037/qims-22-459. Epub 2022 Oct 18.

Abstract

BACKGROUND

Accurately predicting the prognosis of patients with high-grade glioma (HGG) is potentially important for treatment. However, the predictive value of images of various magnetic resonance imaging (MRI) sequences for prognosis at different time points is unknown. We established predictive machine learning models of HGG disease progression and recurrence using MRI radiomics and explored the factors influencing prediction accuracy.

METHODS

Radiomics features were extracted from T1-weighted (T1WI), contrast-enhanced T1-weighted (CE-T1WI), T2-weighted (T2WI), and fluid-attenuated inversion recovery (FLAIR) images (postoperative radiotherapy planning MRI images) obtained from 162 patients with HGG. The Mann-Whitney U test and least absolute shrinkage and selection operator (LASSO) algorithm were used for feature selection. Machine learning models were used to build prediction models to estimate disease progression or recurrence. The influence of different MRI sequences, regions of interest (ROIs), and prediction time points was also explored. The receiver operating characteristic (ROC) curve was used to evaluate the discriminative performance of each model, and the DeLong test was employed to compare the ROC curves.

RESULTS

Radiomics features from T2WI and FLAIR demonstrated greater predictive value for disease progression compared with T1WI or CE-TIWI. The best predictive models, with areas under the ROC curves (AUCs) of 0.70, 0.68, 0.78, 0.78, and 0.78 for predicting disease progression at the 6th, 9th, 12th, 15th, and 18th month after radiotherapy, respectively, were obtained by combining clinical features with gross tumor volume (GTV) and clinical target volume (CTV) features extracted from T2WI and FLAIR.

CONCLUSIONS

Structural MRI obtained before radiotherapy can be used to predict the disease progression or posttreatment recurrence of HGG. When using MRI radiomics to predict long-term outcomes as opposed to short-term outcomes, better predictive results may be obtained.

摘要

背景

准确预测高级别胶质瘤(HGG)患者的预后对治疗具有潜在重要性。然而,不同磁共振成像(MRI)序列图像在不同时间点对预后的预测价值尚不清楚。我们利用MRI放射组学建立了HGG疾病进展和复发的预测机器学习模型,并探讨了影响预测准确性的因素。

方法

从162例HGG患者的T1加权(T1WI)、对比增强T1加权(CE-T1WI)、T2加权(T2WI)和液体衰减反转恢复(FLAIR)图像(术后放疗计划MRI图像)中提取放射组学特征。采用曼-惠特尼U检验和最小绝对收缩和选择算子(LASSO)算法进行特征选择。使用机器学习模型构建预测模型以估计疾病进展或复发。还探讨了不同MRI序列、感兴趣区域(ROI)和预测时间点的影响。采用受试者操作特征(ROC)曲线评估各模型的判别性能,并采用德龙检验比较ROC曲线。

结果

与T1WI或CE-T1WI相比,T2WI和FLAIR的放射组学特征对疾病进展具有更大的预测价值。通过将临床特征与从T2WI和FLAIR中提取的大体肿瘤体积(GTV)和临床靶体积(CTV)特征相结合,分别获得了预测放疗后第6、9、12、15和18个月疾病进展的最佳预测模型,其ROC曲线下面积(AUC)分别为0.70、0.68、0.78、0.78和0.78。

结论

放疗前获得的结构MRI可用于预测HGG的疾病进展或治疗后复发。与预测短期结果相比,使用MRI放射组学预测长期结果可能会获得更好的预测结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7f3/9816734/5321edfc54f4/qims-13-01-224-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验