Suppr超能文献

细胞负载导电水凝胶复合材料的生物打印。

Bioprinting of a Cell-Laden Conductive Hydrogel Composite.

机构信息

Department of Chemical Engineering , Northeastern University , Boston , Massachusetts 02115 , United States.

Chemical and Biomolecular Engineering Department , University of California-Los Angeles , Los Angeles , California 90095 , United States.

出版信息

ACS Appl Mater Interfaces. 2019 Aug 28;11(34):30518-30533. doi: 10.1021/acsami.9b07353. Epub 2019 Aug 16.

Abstract

Bioprinting has gained significant attention for creating biomimetic tissue constructs with potential to be used in biomedical applications such as drug screening or regenerative medicine. Ideally, biomaterials used for three-dimensional (3D) bioprinting should match the mechanical, hydrostatic, bioelectric, and physicochemical properties of the native tissues. However, many materials with these tissue-like properties are not compatible with printing techniques without modifying their compositions. In addition, integration of cell-laden biomaterials with bioprinting methodologies that preserve their physicochemical properties remains a challenge. In this work, a biocompatible conductive hydrogel composed of gelatin methacryloyl (GelMA) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was synthesized and bioprinted to form complex, 3D cell-laden structures. The biofabricated conductive hydrogels were formed by an initial cross-linking step of the PEDOT:PSS with bivalent calcium ions and a secondary photopolymerization step with visible light to cross-link the GelMA component. These modifications enabled tuning the mechanical properties of the hydrogels, with Young's moduli ranging from ∼40-150 kPa, as well as tunable conductivity by varying the concentration of PEDOT:PSS. In addition, the hydrogels degraded in vivo with no substantial inflammatory responses as demonstrated by haematoxylin and eosin (H&E) and immunofluorescent staining of subcutaneously implanted samples in Wistar rats. The parameters for forming a slurry of microgel particles to support 3D bioprinting of the engineered cell-laden hydrogel were optimized to form constructs with improved resolution. High cytocompatibility and cell spreading were demonstrated in both wet-spinning and 3D bioprinting of cell-laden hydrogels with the new conductive hydrogel-based bioink and printing methodology. The synergy of an advanced fabrication method and conductive hydrogel presented here is promising for engineering complex conductive and cell-laden structures.

摘要

生物打印技术在创建具有潜在应用于生物医学领域的仿生组织构建体方面引起了广泛关注,例如药物筛选或再生医学。理想情况下,用于三维(3D)生物打印的生物材料应与天然组织的机械、静水、生物电和物理化学性质相匹配。然而,许多具有这些组织样性质的材料与不改变其组成的打印技术不兼容。此外,将细胞负载的生物材料与能够保持其物理化学性质的生物打印方法集成仍然是一个挑战。在这项工作中,合成了一种由明胶甲基丙烯酰基(GelMA)和聚(3,4-亚乙基二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)组成的生物相容性导电水凝胶,并通过生物打印形成复杂的 3D 细胞负载结构。生物制造的导电水凝胶是通过 PEDOT:PSS 与二价钙离子的初始交联步骤以及可见光下 GelMA 成分的二次光聚合步骤形成的。这些修饰使水凝胶的机械性能得以调整,杨氏模量范围从约 40-150kPa,并且通过改变 PEDOT:PSS 的浓度来调整导电性。此外,水凝胶在体内降解,没有明显的炎症反应,这一点通过苏木精和曙红(H&E)以及皮下植入的 Wistar 大鼠样本的免疫荧光染色得到证明。优化了微凝胶颗粒的浆料形成参数,以支持工程化细胞负载水凝胶的 3D 生物打印,从而形成具有改进分辨率的构建体。在新的导电水凝胶基生物墨水和打印方法的湿纺和 3D 生物打印细胞负载水凝胶中,均证明了高细胞相容性和细胞铺展性。这里提出的先进制造方法和导电水凝胶的协同作用有望用于工程复杂的导电和细胞负载结构。

相似文献

1
Bioprinting of a Cell-Laden Conductive Hydrogel Composite.细胞负载导电水凝胶复合材料的生物打印。
ACS Appl Mater Interfaces. 2019 Aug 28;11(34):30518-30533. doi: 10.1021/acsami.9b07353. Epub 2019 Aug 16.

引用本文的文献

9
Multiscale embedded printing of engineered human tissue and organ equivalents.多尺度嵌入式打印工程化的人类组织和器官等效物。
Proc Natl Acad Sci U S A. 2024 Feb 27;121(9):e2313464121. doi: 10.1073/pnas.2313464121. Epub 2024 Feb 12.

本文引用的文献

2
Liquid-like Solids Support Cells in 3D.类液体固体在三维空间中支持细胞。
ACS Biomater Sci Eng. 2016 Oct 10;2(10):1787-1795. doi: 10.1021/acsbiomaterials.6b00218. Epub 2016 Jun 20.
10
Gold Nanocomposite Bioink for Printing 3D Cardiac Constructs.用于打印3D心脏结构的金纳米复合生物墨水。
Adv Funct Mater. 2017 Mar 24;27(12). doi: 10.1002/adfm.201605352. Epub 2017 Jan 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验