Suppr超能文献

针对2019冠状病毒病患者的基于生物标志物的年龄、生物标志物、临床病史、性别(ABCS)死亡风险评分。

A biomarker-based age, biomarkers, clinical history, sex (ABCS)-mortality risk score for patients with coronavirus disease 2019.

作者信息

Jiang Meng, Li Changli, Zheng Li, Lv Wenzhi, He Zhigang, Cui Xinwu, Dietrich Christoph F

机构信息

Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Department of Geratology, Hubei Provincial Hospital of Integrated Chinese and Western medicine, Wuhan, China.

出版信息

Ann Transl Med. 2021 Feb;9(3):230. doi: 10.21037/atm-20-6205.

Abstract

BACKGROUND

Early identification and timely therapeutic strategies for potential critical patients with coronavirus disease 2019 (COVID-19) are of crucial importance to reduce mortality. We aimed to develop and validate a prediction tool for 30-day mortality for these patients on admission.

METHODS

Consecutive hospitalized patients admitted to Tongji Hospital and Hubei Xinhua Hospital from January 1 to March 10, 2020, were retrospective analyzed. They were grouped as derivation and external validation set. Multivariate Cox regression was applied to identify the risk factors associated with death, and a nomogram was developed and externally validated by calibration plots, C-index, Kaplan-Meier curves and decision curve.

RESULTS

Data from 1,717 patients at the Tongji Hospital and 188 cases at the Hubei Xinhua Hospital were included in our study. Using multivariate Cox regression with backward stepwise selection of variables in the derivation cohort, age, sex, chronic obstructive pulmonary disease (COPD), as well as seven biomarkers (aspartate aminotransferase, high-sensitivity C-reactive protein, high-sensitivity troponin I, white blood cell count, lymphocyte count, D-dimer, and procalcitonin) were incorporated in the model. An age, biomarkers, clinical history, sex (ABCS)-mortality score was developed, which yielded a higher C-index than the conventional CURB-65 score for predicting 30-day mortality in both the derivation cohort {0.888 [95% confidence interval (CI), 0.869-0.907] 0.696 (95% CI, 0.660-0.731)} and validation cohort [0.838 (95% CI, 0.777-0.899) 0.619 (95% CI, 0.519-0.720)], respectively. Furthermore, risk stratified Kaplan-Meier curves showed good discriminatory capacity of the model for classifying patients into distinct mortality risk groups for both derivation and validation cohorts.

CONCLUSIONS

The ABCS-mortality score might be offered to clinicians to strengthen the prognosis-based clinical decision-making, which would be helpful for reducing mortality of COVID-19 patients.

摘要

背景

对于新型冠状病毒肺炎(COVID-19)潜在危重症患者的早期识别和及时治疗策略对于降低死亡率至关重要。我们旨在开发并验证一种针对这些患者入院时30天死亡率的预测工具。

方法

对2020年1月1日至3月10日连续入住同济医院和湖北新华医院的住院患者进行回顾性分析。他们被分为推导集和外部验证集。应用多因素Cox回归识别与死亡相关的危险因素,并通过校准图、C指数、Kaplan-Meier曲线和决策曲线开发并外部验证列线图。

结果

我们的研究纳入了同济医院1717例患者和湖北新华医院188例患者的数据。在推导队列中使用多因素Cox回归并对变量进行向后逐步选择,模型纳入了年龄、性别、慢性阻塞性肺疾病(COPD)以及七种生物标志物(天冬氨酸转氨酶、高敏C反应蛋白、高敏肌钙蛋白I、白细胞计数、淋巴细胞计数、D-二聚体和降钙素原)。开发了一种年龄、生物标志物、临床病史、性别(ABCS)-死亡率评分,在推导队列{0.888[95%置信区间(CI),0.869-0.907]对0.696(95%CI,0.660-0.731)}和验证队列[0.838(95%CI,0.777-0.899)对0.619(95%CI,0.519-0.720)]中,该评分在预测30天死亡率方面的C指数均高于传统的CURB-65评分。此外,风险分层的Kaplan-Meier曲线显示该模型在推导队列和验证队列中均具有良好的区分能力,可将患者分为不同的死亡风险组。

结论

ABCS-死亡率评分可为临床医生提供参考,以加强基于预后的临床决策,这将有助于降低COVID-19患者的死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f702/7940919/16d9f364f541/atm-09-03-230-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验