Suppr超能文献

深度学习方法从行政索赔中预测糖尿病的心血管并发症。

A Deep Learning Approach to Predict Diabetes' Cardiovascular Complications From Administrative Claims.

出版信息

IEEE J Biomed Health Inform. 2021 Sep;25(9):3608-3617. doi: 10.1109/JBHI.2021.3065756. Epub 2021 Sep 3.

Abstract

People with diabetes require lifelong access to healthcare services to delay the onset of complications. Their disease management processes generate great volumes of data across several domains, from clinical to administrative. Difficulties in accessing and processing these data hinder their secondary use in an institutional setting, even for highly desirable applications, such as the prediction of cardiovascular disease, the main driver of excess mortality in diabetes. Hence, in the present work, we propose a deep learning model for the prediction of major adverse cardiovascular events (MACE), developed and validated using the administrative claims of 214,676 diabetic patients of the Veneto region, in North East Italy. Specifically, we use a year of pharmacy and hospitalisation claims, together with basic patient's information, to predict the 4P-MACE composite endpoint, i.e., the first occurrence of death, heart failure, myocardial infarction, or stroke, with a variable prediction horizon of 1 to 5 years. Adapting to the time-to-event nature of this task, we cast our problem as a multi-outcome (4P-MACE and components), multi-label (1 to 5 years) classification task with a custom loss to account for the effect of censoring. Our model, purposefully specified to minimise data preparation costs, exhibits satisfactory performance in predicting 4P-MACE at all prediction horizons: AUROC from 0.812 (C.I.: 0.797 - 0.827) to 0.792 (C.I.: 0.781 - 0.802); C-index from 0.802 (C.I.: 0.788 - 0.816) to 0.770 (C.I.: 0.761 - 0.779). Components' prediction performance is also adequate, ranging from death's 0.877 1-year AUROC to stroke's 0.689 5-year AUROC.

摘要

糖尿病患者需要终身获得医疗保健服务,以延缓并发症的发生。他们的疾病管理过程会在多个领域产生大量数据,包括临床和行政领域。在机构环境中,由于难以访问和处理这些数据,即使是对心血管疾病等非常有价值的应用(如心血管疾病的预测),这些数据的二次利用也受到阻碍,而心血管疾病是糖尿病患者死亡的主要原因。因此,在本工作中,我们提出了一种用于预测主要不良心血管事件(MACE)的深度学习模型,该模型使用意大利东北部威尼托地区 214676 名糖尿病患者的行政索赔数据进行了开发和验证。具体来说,我们使用一年的药房和住院索赔数据,以及基本患者信息,来预测 4P-MACE 复合终点,即死亡、心力衰竭、心肌梗死或中风的首次发生,预测时间范围为 1 至 5 年。为了适应该任务的时间到事件性质,我们将我们的问题转化为一个多结果(4P-MACE 和组件)、多标签(1 至 5 年)分类任务,使用自定义损失来考虑删失的影响。我们的模型专门指定为最小化数据准备成本,在预测所有预测时间范围内的 4P-MACE 时表现出令人满意的性能:AUROC 从 0.812(CI:0.797-0.827)到 0.792(CI:0.781-0.802);C 指数从 0.802(CI:0.788-0.816)到 0.770(CI:0.761-0.779)。组件的预测性能也足够好,从死亡的 1 年 AUROC 为 0.877 到中风的 5 年 AUROC 为 0.689。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验