Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
NAVER CLOVA AI Lab, Seongnam, Korea.
Endocrinol Metab (Seoul). 2024 Feb;39(1):176-185. doi: 10.3803/EnM.2023.1739. Epub 2023 Nov 21.
Cardiovascular disease is life-threatening yet preventable for patients with type 2 diabetes mellitus (T2DM). Because each patient with T2DM has a different risk of developing cardiovascular complications, the accurate stratification of cardiovascular risk is critical. In this study, we proposed cardiovascular risk engines based on machine-learning algorithms for newly diagnosed T2DM patients in Korea.
To develop the machine-learning-based cardiovascular disease engines, we retrospectively analyzed 26,166 newly diagnosed T2DM patients who visited Seoul St. Mary's Hospital between July 2009 and April 2019. To accurately measure diabetes-related cardiovascular events, we designed a buffer (1 year), an observation (1 year), and an outcome period (5 years). The entire dataset was split into training and testing sets in an 8:2 ratio, and this procedure was repeated 100 times. The area under the receiver operating characteristic curve (AUROC) was calculated by 10-fold cross-validation on the training dataset.
The machine-learning-based risk engines (AUROC XGBoost=0.781±0.014 and AUROC gated recurrent unit [GRU]-ordinary differential equation [ODE]-Bayes=0.812±0.016) outperformed the conventional regression-based model (AUROC=0.723± 0.036).
GRU-ODE-Bayes-based cardiovascular risk engine is highly accurate, easily applicable, and can provide valuable information for the individualized treatment of Korean patients with newly diagnosed T2DM.
心血管疾病对 2 型糖尿病(T2DM)患者是致命的,但可预防。由于每位 T2DM 患者发生心血管并发症的风险不同,因此准确分层心血管风险至关重要。在这项研究中,我们为韩国新诊断的 T2DM 患者提出了基于机器学习算法的心血管风险引擎。
为了开发基于机器学习的心血管疾病引擎,我们回顾性分析了 2009 年 7 月至 2019 年 4 月期间在首尔圣玛丽医院就诊的 26166 例新诊断的 T2DM 患者。为了准确测量与糖尿病相关的心血管事件,我们设计了一个缓冲区(1 年)、观察期(1 年)和结果期(5 年)。整个数据集以 8:2 的比例分为训练集和测试集,并重复此过程 100 次。通过在训练数据集上进行 10 折交叉验证来计算接收器操作特征曲线(AUROC)下的面积。
基于机器学习的风险引擎(AUROC XGBoost=0.781±0.014 和 AUROC 门控递归单元[GRU]-常微分方程[ODE]-贝叶斯=0.812±0.016)优于传统的基于回归的模型(AUROC=0.723±0.036)。
基于 GRU-ODE-Bayes 的心血管风险引擎具有很高的准确性,易于应用,并可为韩国新诊断的 T2DM 患者的个体化治疗提供有价值的信息。