School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Road, Nangang District, Harbin, 150001, P. R. China.
Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China.
Small. 2021 Apr;17(14):e2006612. doi: 10.1002/smll.202006612. Epub 2021 Mar 12.
The adoption of neural interfacing into neurological diagnosis is severely hampered by the complex, costly, and error-prone manufacturing methods, requiring new fabrication processes and materials for flexible neural interfacing. Here a strategy for fabricating highly stretchable neural electrode arrays based on screen printing of liquid metal conductors onto polydimethylsiloxane substrates is presented. The screen-printed electrode arrays show a resolution of 50 µm, which is ideally applicable to neural interfaces. The integration of liquid metal-polymer conductor enables the neural electrode arrays to retain stable electrical properties and compliant mechanical performance under a significant (≈108%) strain. Taking advantage of its high biocompatibility, liquid metal electrode arrays exhibit excellent performance for neurite growth and long-term implantation. The stretchable electrode arrays can spontaneously conformally come in touch with the brain surface, and high-throughput electrocorticogram signals are recorded. Based on stretchable electrode arrays, real-time monitoring of epileptiform activities can be provided at different states of seizure. The method reported here offers a new fabrication strategy to manufacture stretchable neural electrodes, with additional potential utility in diagnostic brain-machine interfaces.
神经接口在神经诊断中的应用受到复杂、昂贵且容易出错的制造方法的严重阻碍,需要新的制造工艺和材料来实现灵活的神经接口。本文提出了一种基于液态金属导体丝网印刷到聚二甲基硅氧烷基底上的方法,用于制造高拉伸性神经电极阵列。所制备的丝网印刷电极阵列具有 50 µm 的分辨率,非常适用于神经接口。液态金属-聚合物导体的集成使神经电极阵列在高达 108%的应变下仍能保持稳定的电学性能和柔顺的机械性能。得益于其出色的生物兼容性,液态金属电极阵列在神经突生长和长期植入方面表现出优异的性能。这种可拉伸电极阵列可以自发地与大脑表面贴合,并记录高分辨率的脑电信号。基于可拉伸电极阵列,可以在不同的癫痫发作状态下提供实时的癫痫活动监测。本研究提出的方法为制造可拉伸神经电极提供了一种新的制造策略,在诊断性脑机接口方面具有潜在的应用价值。