Suppr超能文献

自动化慢速移液的一致超长 DNA 测序。

Consistent ultra-long DNA sequencing with automated slow pipetting.

机构信息

Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, USA.

Wisconsin National Primate Research Center, University of Wisconsin, Madison, USA.

出版信息

BMC Genomics. 2021 Mar 12;22(1):182. doi: 10.1186/s12864-021-07500-w.

Abstract

BACKGROUND

Oxford Nanopore Technologies' instruments can sequence reads of great length. Long reads improve sequence assemblies by unambiguously spanning repetitive elements of the genome. Sequencing reads of significant length requires the preservation of long DNA template molecules through library preparation by pipetting reagents as slowly as possible to minimize shearing. This process is time-consuming and inconsistent at preserving read length as even small changes in volumetric flow rate can result in template shearing.

RESULTS

We have designed SNAILS (Slow Nucleic Acid Instrument for Long Sequences), a 3D-printable instrument that automates slow pipetting of reagents used in long read library preparation for Oxford Nanopore sequencing. Across six sequencing libraries, SNAILS preserved more reads exceeding 100 kilobases in length and increased its libraries' average read length over manual slow pipetting.

CONCLUSIONS

SNAILS is a low-cost, easily deployable solution for improving sequencing projects that require reads of significant length. By automating the slow pipetting of library preparation reagents, SNAILS increases the consistency and throughput of long read Nanopore sequencing.

摘要

背景

牛津纳米孔技术公司的仪器可以对长度非常长的读段进行测序。长读段通过明确跨越基因组重复元件来提高序列组装质量。要获得显著长度的测序读段,需要通过尽可能缓慢地移液试剂来制备文库,以最小化剪切,从而保持长 DNA 模板分子。这个过程既耗时又不一致,因为即使体积流速的微小变化也可能导致模板剪切。

结果

我们设计了 SNAILS(用于长序列的缓慢核酸仪器),这是一种 3D 可打印仪器,可自动缓慢移液用于牛津纳米孔测序的长读段文库制备的试剂。在六个测序文库中,SNAILS 保留了更多长度超过 100 千碱基的读段,并增加了其文库的平均读段长度,超过了手动缓慢移液。

结论

SNAILS 是一种低成本、易于部署的解决方案,可用于提高需要显著长度读段的测序项目。通过自动缓慢移液文库制备试剂,SNAILS 提高了长读段纳米孔测序的一致性和通量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ace1/7953553/c22df91fe4f5/12864_2021_7500_Fig1_HTML.jpg

相似文献

1
Consistent ultra-long DNA sequencing with automated slow pipetting.
BMC Genomics. 2021 Mar 12;22(1):182. doi: 10.1186/s12864-021-07500-w.
3
Genome assembly using Nanopore-guided long and error-free DNA reads.
BMC Genomics. 2015 Apr 20;16(1):327. doi: 10.1186/s12864-015-1519-z.
4
MinION™ nanopore sequencing of environmental metagenomes: a synthetic approach.
Gigascience. 2017 Mar 1;6(3):1-10. doi: 10.1093/gigascience/gix007.
5
High precision genome sequencing of engineered Gluconobacter oxydans 621H by combining long nanopore and short accurate Illumina reads.
J Biotechnol. 2017 Sep 20;258:197-205. doi: 10.1016/j.jbiotec.2017.04.016. Epub 2017 Apr 19.
6
Oxford Nanopore MinION Sequencing and Genome Assembly.
Genomics Proteomics Bioinformatics. 2016 Oct;14(5):265-279. doi: 10.1016/j.gpb.2016.05.004. Epub 2016 Sep 17.
7
9
Oxford Nanopore sequencing: new opportunities for plant genomics?
J Exp Bot. 2020 Sep 19;71(18):5313-5322. doi: 10.1093/jxb/eraa263.
10
Polishing the Oxford Nanopore long-read assemblies of bacterial pathogens with Illumina short reads to improve genomic analyses.
Genomics. 2021 May;113(3):1366-1377. doi: 10.1016/j.ygeno.2021.03.018. Epub 2021 Mar 11.

引用本文的文献

1
CloneFast: A simple plasmid design and construction guide for labs venturing into synthetic biology.
STAR Protoc. 2025 Aug 6;6(3):104025. doi: 10.1016/j.xpro.2025.104025.
2
BAR-CAT: Targeted Recovery of Synthetic Genes via Barcode-Directed CRISPR-dCas9 Enrichment.
bioRxiv. 2025 Jun 30:2025.06.27.658158. doi: 10.1101/2025.06.27.658158.
3
Improved Isolation of Ultra-High-Molecular-Weight Genomic DNA Suitable for Third-Generation Sequencing.
Microorganisms. 2025 Feb 27;13(3):534. doi: 10.3390/microorganisms13030534.
4
Unraveling metagenomics through long-read sequencing: a comprehensive review.
J Transl Med. 2024 Jan 28;22(1):111. doi: 10.1186/s12967-024-04917-1.
5
Epigenetic tumor heterogeneity in the era of single-cell profiling with nanopore sequencing.
Clin Epigenetics. 2022 Aug 27;14(1):107. doi: 10.1186/s13148-022-01323-6.
6
Low-Input High-Molecular-Weight DNA Extraction for Long-Read Sequencing From Plants of Diverse Families.
Front Plant Sci. 2022 May 19;13:883897. doi: 10.3389/fpls.2022.883897. eCollection 2022.
7
Prospects of telomere-to-telomere assembly in barley: Analysis of sequence gaps in the MorexV3 reference genome.
Plant Biotechnol J. 2022 Jul;20(7):1373-1386. doi: 10.1111/pbi.13816. Epub 2022 Apr 7.

本文引用的文献

1
Telomere-to-telomere assembly of a complete human X chromosome.
Nature. 2020 Sep;585(7823):79-84. doi: 10.1038/s41586-020-2547-7. Epub 2020 Jul 14.
2
Long-read nanopore sequencing resolves a TMEM231 gene conversion event causing Meckel-Gruber syndrome.
Hum Mutat. 2020 Feb;41(2):525-531. doi: 10.1002/humu.23940. Epub 2019 Nov 11.
3
Long-read sequencing in deciphering human genetics to a greater depth.
Hum Genet. 2019 Dec;138(11-12):1201-1215. doi: 10.1007/s00439-019-02064-y. Epub 2019 Sep 19.
5
Simple and low-cost production of hybrid 3D-printed microfluidic devices.
Biomicrofluidics. 2019 Apr 23;13(2):024108. doi: 10.1063/1.5092529. eCollection 2019 Mar.
6
Ultra-long Read Sequencing for Whole Genomic DNA Analysis.
J Vis Exp. 2019 Mar 15(145). doi: 10.3791/58954.
7
BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files.
Bioinformatics. 2019 Jul 1;35(13):2193-2198. doi: 10.1093/bioinformatics/bty841.
8
Highly Contiguous Genome Assemblies of 15 Species Generated Using Nanopore Sequencing.
G3 (Bethesda). 2018 Oct 3;8(10):3131-3141. doi: 10.1534/g3.118.200160.
9
Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics. 2018 Sep 15;34(18):3094-3100. doi: 10.1093/bioinformatics/bty191.
10
Linear assembly of a human centromere on the Y chromosome.
Nat Biotechnol. 2018 Apr;36(4):321-323. doi: 10.1038/nbt.4109. Epub 2018 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验