Suppr超能文献

使用纳米孔引导的长且无错误的DNA reads进行基因组组装。

Genome assembly using Nanopore-guided long and error-free DNA reads.

作者信息

Madoui Mohammed-Amin, Engelen Stefan, Cruaud Corinne, Belser Caroline, Bertrand Laurie, Alberti Adriana, Lemainque Arnaud, Wincker Patrick, Aury Jean-Marc

机构信息

Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057, Evry, France.

Université d'Evry Val d'Essonne, UMR 8030, CP5706, 91057, Evry, France.

出版信息

BMC Genomics. 2015 Apr 20;16(1):327. doi: 10.1186/s12864-015-1519-z.

Abstract

BACKGROUND

Long-read sequencing technologies were launched a few years ago, and in contrast with short-read sequencing technologies, they offered a promise of solving assembly problems for large and complex genomes. Moreover by providing long-range information, it could also solve haplotype phasing. However, existing long-read technologies still have several limitations that complicate their use for most research laboratories, as well as in large and/or complex genome projects. In 2014, Oxford Nanopore released the MinION® device, a small and low-cost single-molecule nanopore sequencer, which offers the possibility of sequencing long DNA fragments.

RESULTS

The assembly of long reads generated using the Oxford Nanopore MinION® instrument is challenging as existing assemblers were not implemented to deal with long reads exhibiting close to 30% of errors. Here, we presented a hybrid approach developed to take advantage of data generated using MinION® device. We sequenced a well-known bacterium, Acinetobacter baylyi ADP1 and applied our method to obtain a highly contiguous (one single contig) and accurate genome assembly even in repetitive regions, in contrast to an Illumina-only assembly. Our hybrid strategy was able to generate NaS (Nanopore Synthetic-long) reads up to 60 kb that aligned entirely and with no error to the reference genome and that spanned highly conserved repetitive regions. The average accuracy of NaS reads reached 99.99% without losing the initial size of the input MinION® reads.

CONCLUSIONS

We described NaS tool, a hybrid approach allowing the sequencing of microbial genomes using the MinION® device. Our method, based ideally on 20x and 50x of NaS and Illumina reads respectively, provides an efficient and cost-effective way of sequencing microbial or small eukaryotic genomes in a very short time even in small facilities. Moreover, we demonstrated that although the Oxford Nanopore technology is a relatively new sequencing technology, currently with a high error rate, it is already useful in the generation of high-quality genome assemblies.

摘要

背景

长读长测序技术在几年前问世,与短读长测序技术相比,有望解决大型复杂基因组的组装问题。此外,通过提供长程信息,还能解决单倍型定相问题。然而,现有的长读长技术仍存在一些局限性,这使得它们在大多数研究实验室以及大型和/或复杂基因组项目中的应用变得复杂。2014年,牛津纳米孔公司发布了MinION®设备,这是一种小型低成本的单分子纳米孔测序仪,它为长DNA片段测序提供了可能。

结果

使用牛津纳米孔MinION®仪器生成的长读长的组装具有挑战性,因为现有的组装程序并未针对处理错误率接近30%的长读长而设计。在此,我们提出了一种混合方法,旨在利用MinION®设备生成的数据。我们对一种著名的细菌——拜氏不动杆菌ADP1进行了测序,并应用我们的方法获得了一个高度连续(单个重叠群)且准确的基因组组装,即使在重复区域也是如此,这与仅使用Illumina测序的组装结果形成对比。我们的混合策略能够生成长达60 kb的NaS(纳米孔合成长读长)读长,这些读长能与参考基因组完全对齐且无错误,并且跨越高度保守的重复区域。NaS读长的平均准确率达到99.99%,同时没有损失输入的MinION®读长的初始长度。

结论

我们描述了NaS工具,这是一种使用MinION®设备对微生物基因组进行测序的混合方法。我们的方法理想情况下分别基于20倍和50倍的NaS和Illumina读长,即使在小型设施中,也能在极短时间内提供一种高效且经济高效的微生物或小型真核生物基因组测序方法。此外,我们证明了尽管牛津纳米孔技术是一种相对较新的测序技术,目前错误率较高,但它已经可用于生成高质量的基因组组装。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06a9/4460631/a351c709bace/12864_2015_1519_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验