Suppr超能文献

HIV-1 基因组 RNA U3 区形成稳定的四联体-发夹结构。

HIV-1 genomic RNA U3 region forms a stable quadruplex-hairpin structure.

机构信息

Department of Chemistry and Biochemistry, Center for Retroviral Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.

Department of Chemistry and Biochemistry, Center for Retroviral Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.

出版信息

Biophys Chem. 2021 May;272:106567. doi: 10.1016/j.bpc.2021.106567. Epub 2021 Mar 8.

Abstract

The U3 promoter region of the HIV-1 long terminal repeat (LTR) has previously been shown to fold into a series of dynamic G-quadruplex structures. Among the G-quadruplexes identified in the LTR sequence, LTR-III was shown to be the most stable in vitro. NMR studies of this 28-nucleotide (nt) DNA revealed a unique quadruplex-hairpin structure. Whether the hairpin forms in RNA element is unknown and the role of the hairpin in the structure and stability of quadruplexes has not been characterized. Here, we used optical and thermodynamic studies to address these questions. The wild-type LTR-III RNA formed a monomolecular quadruplex with a parallel topology using only propeller loops, including the hairpin loop element. By comparison to the WT and variant RNAs, LTR-III DNA structures were more heterogeneous and less stable. Increased stability of the RNA suggests that the RNA quadruplex-hairpin structure may be a more attractive therapeutic target than the analogous DNA element.

摘要

HIV-1 长末端重复序列(LTR)的 U3 启动子区域先前已被证明可折叠成一系列动态 G-四链体结构。在 LTR 序列中鉴定出的 G-四链体中,LTR-III 在体外显示出最稳定。对该 28 个核苷酸(nt)DNA 的 NMR 研究揭示了一种独特的四链体-发夹结构。发夹是否在 RNA 元件中形成尚不清楚,并且发夹在四链体的结构和稳定性中的作用尚未得到表征。在这里,我们使用光学和热力学研究来解决这些问题。野生型 LTR-III RNA 仅使用推进器环,包括发夹环元件,形成具有平行拓扑的单分子四链体。与 WT 和变体 RNA 相比,LTR-III DNA 结构更加异质且稳定性更低。RNA 稳定性的增加表明,RNA 四链体-发夹结构可能比类似的 DNA 元件更具吸引力的治疗靶标。

相似文献

引用本文的文献

5
Structural and computational studies of HIV-1 RNA.HIV-1 RNA 的结构与计算研究。
RNA Biol. 2024 Jan;21(1):1-32. doi: 10.1080/15476286.2023.2289709. Epub 2023 Dec 15.
6
9
Photoresponsive Control of G-Quadruplex DNA Systems.G-四链体DNA系统的光响应控制
JACS Au. 2021 Sep 7;1(10):1516-1526. doi: 10.1021/jacsau.1c00283. eCollection 2021 Oct 25.

本文引用的文献

1
Stability Factors of the Parallel Quadruplexes: DNA Versus RNA.平行四链体的稳定性因素:DNA 与 RNA。
J Phys Chem B. 2019 Feb 7;123(5):1060-1067. doi: 10.1021/acs.jpcb.8b11559. Epub 2019 Jan 25.
2
DNA Quadruple Helices in Nanotechnology.DNA 四链体在纳米技术中的应用。
Chem Rev. 2019 May 22;119(10):6290-6325. doi: 10.1021/acs.chemrev.8b00629. Epub 2019 Jan 3.
5
G-Quadruplex Secondary Structure Obtained from Circular Dichroism Spectroscopy.从圆二色性光谱获得的 G-四链体二级结构。
Angew Chem Int Ed Engl. 2018 Jun 11;57(24):7171-7175. doi: 10.1002/anie.201709184. Epub 2018 Apr 25.
7
G-quadruplex structures mark human regulatory chromatin.G-四链体结构标记人类调控染色质。
Nat Genet. 2016 Oct;48(10):1267-72. doi: 10.1038/ng.3662. Epub 2016 Sep 12.
9
G-quadruplexes and their regulatory roles in biology.G-四链体及其在生物学中的调控作用。
Nucleic Acids Res. 2015 Oct 15;43(18):8627-37. doi: 10.1093/nar/gkv862. Epub 2015 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验