Suppr超能文献

用于在滴流床反应器和旋转床反应器中连续转化环己酮的生物膜。

biofilms for continuous conversion of cyclohexanone in drip flow and rotating bed reactors.

作者信息

Heuschkel Ingeborg, Hanisch Selina, Volke Daniel C, Löfgren Erik, Hoschek Anna, Nikel Pablo I, Karande Rohan, Bühler Katja

机构信息

Department of Solar Materials Helmholtz-Centre for Environmental Research Leipzig Germany.

ZINT - Zentrum für integrierte Naturstofftechnik TU Dresden Dresden Germany.

出版信息

Eng Life Sci. 2021 Feb 2;21(3-4):258-269. doi: 10.1002/elsc.202000072. eCollection 2021 Mar.

Abstract

In this study, the biocatalytic performance of a Baeyer-Villiger monooxygenase (BVMO) catalyzing the reaction of cyclohexanone to ε-caprolactone was investigated in biofilms. Biofilm growth and development of two VLB120 variants, Ps_BVMO and Ps_BVMO_DGC, were evaluated in drip flow reactors (DFRs) and rotating bed reactors (RBRs). Engineering a hyperactive diguanylate cyclase (DGC) from into Ps_BVMO resulted in faster biofilm growth compared to the control Ps_BVMO strain in the DFRs. The maximum product formation rates of 92 and 87 g m d were observed for mature Ps_BVMO and Ps_ BVMO_DGC biofilms, respectively. The application of the engineered variants in the RBR was challenged by low biofilm surface coverage (50-60%) of rotating bed cassettes, side-products formation, oxygen limitation, and a severe drop in production rates with time. By implementing an active oxygen supply mode and a twin capillary spray feed, the biofilm surface coverage was maximized to 70-80%. BVMO activity was severely inhibited by cyclohexanol formation, resulting in a decrease in product formation rates. By controlling the cyclohexanone feed concentration at 4 mM, a stable product formation rate of 14 g m d and a substrate conversion of 60% was achieved in the RBR.

摘要

在本研究中,对催化环己酮反应生成ε-己内酯的拜耳-维利格单加氧酶(BVMO)在生物膜中的生物催化性能进行了研究。在滴流反应器(DFR)和旋转床反应器(RBR)中评估了两种VLB120变体,即Ps_BVMO和Ps_BVMO_DGC的生物膜生长和发育情况。将一种来自[具体来源未提及]的高活性二鸟苷酸环化酶(DGC)工程化到Ps_BVMO中,与DFR中的对照Ps_BVMO菌株相比,导致生物膜生长更快。成熟的Ps_BVMO和Ps_BVMO_DGC生物膜的最大产物形成速率分别为92和87 g m⁻² d⁻¹。工程变体在RBR中的应用面临旋转床盒生物膜表面覆盖率低(50 - 60%)、副产物形成、氧气限制以及随着时间推移生产率严重下降等挑战。通过实施主动供氧模式和双毛细管喷雾进料,生物膜表面覆盖率最大化至70 - 80%。环己醇的形成严重抑制了BVMO活性,导致产物形成速率下降。通过将环己酮进料浓度控制在4 mM,在RBR中实现了14 g m⁻² d⁻¹的稳定产物形成速率和60%的底物转化率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29c0/7923564/92eaea7bc30c/ELSC-21-258-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验