Suppr超能文献

等体积方案在16S扩增子测序中产生与总微生物负荷成比例的文库大小。

Equivolumetric Protocol Generates Library Sizes Proportional to Total Microbial Load in 16S Amplicon Sequencing.

作者信息

Cruz Giuliano Netto Flores, Christoff Ana Paula, de Oliveira Luiz Felipe Valter

机构信息

BiomeHub, Florianopolis, Brazil.

出版信息

Front Microbiol. 2021 Feb 26;12:638231. doi: 10.3389/fmicb.2021.638231. eCollection 2021.

Abstract

High-throughput sequencing of 16S rRNA amplicon has been extensively employed to perform microbiome characterization worldwide. As a culture-independent methodology, it has allowed high-level profiling of sample bacterial composition directly from samples. However, most studies are limited to information regarding relative bacterial abundances (sample proportions), ignoring scenarios in which sample microbe biomass can vary widely. Here, we use an equivolumetric protocol for 16S rRNA amplicon library preparation capable of generating Illumina sequencing data responsive to input DNA, recovering proportionality between observed read counts and absolute bacterial abundances within each sample. Under specified conditions, we show that the estimation of colony-forming units (CFU), the most common unit of bacterial abundance in classical microbiology, is challenged mostly by resolution and taxon-to-taxon variation. We propose Bayesian cumulative probability models to address such issues. Our results indicate that predictive errors vary consistently below one order of magnitude for total microbial load and abundance of observed bacteria. We also demonstrate our approach has the potential to generalize to previously unseen bacteria, but predictive performance is hampered by specific taxa of uncommon profile. Finally, it remains clear that high-throughput sequencing data are not inherently restricted to sample proportions only, and such technologies bear the potential to meet the working scales of traditional microbiology.

摘要

16S rRNA扩增子的高通量测序已在全球范围内广泛用于微生物群落特征分析。作为一种不依赖培养的方法,它可以直接从样本中对样本细菌组成进行高水平分析。然而,大多数研究仅限于有关细菌相对丰度(样本比例)的信息,而忽略了样本微生物生物量可能有很大差异的情况。在这里,我们使用一种等体积方案来制备16S rRNA扩增子文库,该方案能够生成对输入DNA有响应的Illumina测序数据,恢复每个样本中观察到的读数计数与绝对细菌丰度之间的比例关系。在特定条件下,我们表明,经典微生物学中最常见的细菌丰度单位——菌落形成单位(CFU)的估计主要受到分辨率和分类群间变异的挑战。我们提出贝叶斯累积概率模型来解决此类问题。我们的结果表明,对于总微生物负荷和观察到的细菌丰度,预测误差始终在一个数量级以下变化。我们还证明了我们的方法有潜力推广到以前未见过的细菌,但预测性能受到不常见谱系的特定分类群的阻碍。最后,很明显,高通量测序数据并非天生仅局限于样本比例,而且此类技术有潜力满足传统微生物学的工作规模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10e1/7952455/0ce207f72dbc/fmicb-12-638231-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验