Suppr超能文献

在新冠病毒疾病(COVID-19)数据集上使用无监督机器学习技术进行社区检测。

Community detection using unsupervised machine learning techniques on COVID-19 dataset.

作者信息

Chaudhary Laxmi, Singh Buddha

机构信息

Jawaharlal Nehru University, New Delhi, 110067 India.

出版信息

Soc Netw Anal Min. 2021;11(1):28. doi: 10.1007/s13278-021-00734-2. Epub 2021 Mar 10.

Abstract

COVID-19 has been considered to be the most destructive pandemic ever happened in the history of mankind. The worldwide research community has put a tenacious effort to carry out research on the COVID-19 to analyse its impact on economic, medical and sociolgoical fields. They are trying to solve many crucial issues related to this disease and derive strategies to deal with this global pandemic. In this paper, we have analysed the trend, countries affected regionally and the variation of cases at the country level on COVID-19 dataset. We have used the Principal component analysis on the COVID-19 dataset variables to reduce the dimensionality and find the most significant variables. Further, we have unveiled the hidden community structure of countries by applying the unsupervised clustering approach, K-means. We have compared the results with the K-means method. The communities achieved after applying the PCA are more precise. The resulted communities can be beneficial to researchers, scientists, sociologists, different policy makers and managers of health sector.

摘要

新型冠状病毒肺炎(COVID-19)被认为是人类历史上最具破坏性的大流行病。全球研究界为开展对COVID-19的研究付出了不懈努力,以分析其对经济、医学和社会学领域的影响。他们试图解决与这种疾病相关的许多关键问题,并制定应对这一全球大流行病的策略。在本文中,我们分析了COVID-19数据集的趋势、受影响的地区国家以及国家层面病例的变化情况。我们对COVID-19数据集变量进行主成分分析以降低维度并找出最显著的变量。此外,我们通过应用无监督聚类方法K均值揭示了各国隐藏的社区结构。我们将结果与K均值方法进行了比较。应用主成分分析后得到的社区更为精确。所得出的社区对研究人员、科学家、社会学家、不同的政策制定者以及卫生部门的管理人员可能会有所帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a55d/7943333/3bfd5c67f5a1/13278_2021_734_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验