Suppr超能文献

MCFF-MTDDI:用于多类型药物-药物相互作用预测的多通道特征融合

MCFF-MTDDI: multi-channel feature fusion for multi-typed drug-drug interaction prediction.

作者信息

Han Chen-Di, Wang Chun-Chun, Huang Li, Chen Xing

机构信息

School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.

School of Science, Jiangnan University, Wuxi, 214122, China.

出版信息

Brief Bioinform. 2023 Jul 20;24(4). doi: 10.1093/bib/bbad215.

Abstract

Adverse drug-drug interactions (DDIs) have become an increasingly serious problem in the medical and health system. Recently, the effective application of deep learning and biomedical knowledge graphs (KGs) have improved the DDI prediction performance of computational models. However, the problems of feature redundancy and KG noise also arise, bringing new challenges for researchers. To overcome these challenges, we proposed a Multi-Channel Feature Fusion model for multi-typed DDI prediction (MCFF-MTDDI). Specifically, we first extracted drug chemical structure features, drug pairs' extra label features, and KG features of drugs. Then, these different features were effectively fused by a multi-channel feature fusion module. Finally, multi-typed DDIs were predicted through the fully connected neural network. To our knowledge, we are the first to integrate the extra label information into KG-based multi-typed DDI prediction; besides, we innovatively proposed a novel KG feature learning method and a State Encoder to obtain target drug pairs' KG-based features which contained more abundant and more key drug-related KG information with less noise; furthermore, a Gated Recurrent Unit-based multi-channel feature fusion module was proposed in an innovative way to yield more comprehensive feature information about drug pairs, effectively alleviating the problem of feature redundancy. We experimented with four datasets in the multi-class and the multi-label prediction tasks to comprehensively evaluate the performance of MCFF-MTDDI for predicting interactions of known-known drugs, known-new drugs and new-new drugs. In addition, we further conducted ablation studies and case studies. All the results fully demonstrated the effectiveness of MCFF-MTDDI.

摘要

药物不良相互作用(DDIs)已成为医疗卫生系统中日益严重的问题。最近,深度学习和生物医学知识图谱(KGs)的有效应用提高了计算模型的DDI预测性能。然而,特征冗余和KG噪声问题也随之出现,给研究人员带来了新的挑战。为了克服这些挑战,我们提出了一种用于多类型DDI预测的多通道特征融合模型(MCFF-MTDDI)。具体来说,我们首先提取了药物化学结构特征、药物对的额外标签特征以及药物的KG特征。然后,通过多通道特征融合模块有效地融合这些不同的特征。最后,通过全连接神经网络预测多类型DDIs。据我们所知,我们是第一个将额外标签信息整合到基于KG的多类型DDI预测中的;此外,我们创新性地提出了一种新颖的KG特征学习方法和一个状态编码器,以获得目标药物对基于KG的特征,这些特征包含更丰富、更关键的药物相关KG信息且噪声更少;此外,以创新的方式提出了一种基于门控循环单元的多通道特征融合模块,以产生关于药物对更全面的特征信息,有效缓解了特征冗余问题。我们在多类和多标签预测任务中对四个数据集进行了实验,以全面评估MCFF-MTDDI在预测已知-已知药物、已知-新药和新-新药相互作用方面的性能。此外,我们还进一步进行了消融研究和案例研究。所有结果充分证明了MCFF-MTDDI的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验