Naser Mohamed A, van Dijk Lisanne V, He Renjie, Wahid Kareem A, Fuller Clifton D
Department of Radiation Oncology, The University of Texas MD AndersonCancer, Houston, TX 77030, USA
Head Neck Tumor Segm (2020). 2021;12603:85-98. doi: 10.1007/978-3-030-67194-5_10. Epub 2021 Jan 13.
Segmentation of head and neck cancer (HNC) primary tumors onmedical images is an essential, yet labor-intensive, aspect of radiotherapy.PET/CT imaging offers a unique ability to capture metabolic and anatomicinformation, which is invaluable for tumor detection and border definition. Anautomatic segmentation tool that could leverage the dual streams of informationfrom PET and CT imaging simultaneously, could substantially propel HNCradiotherapy workflows forward. Herein, we leverage a multi-institutionalPET/CT dataset of 201 HNC patients, as part of the MICCAI segmentationchallenge, to develop novel deep learning architectures for primary tumor auto-segmentation for HNC patients. We preprocess PET/CT images by normalizingintensities and applying data augmentation to mitigate overfitting. Both 2D and3D convolutional neural networks based on the U-net architecture, which wereoptimized with a model loss function based on a combination of dice similaritycoefficient (DSC) and binary cross entropy, were implemented. The median andmean DSC values comparing the predicted tumor segmentation with the groundtruth achieved by the models through 5-fold cross validation are 0.79 and 0.69for the 3D model, respectively, and 0.79 and 0.67 for the 2D model, respec-tively. These promising results show potential to provide an automatic, accurate,and efficient approach for primary tumor auto-segmentation to improve theclinical practice of HNC treatment.
在医学图像上对头颈部癌(HNC)原发性肿瘤进行分割是放射治疗中一个重要但劳动强度大的方面。PET/CT成像具有捕捉代谢和解剖信息的独特能力,这对于肿瘤检测和边界定义非常宝贵。一种能够同时利用PET和CT成像的双流信息的自动分割工具,可以极大地推动HNC放射治疗工作流程的发展。在此,我们利用一个包含201名HNC患者的多机构PET/CT数据集,作为医学图像计算方法国际会议(MICCAI)分割挑战赛的一部分,来开发用于HNC患者原发性肿瘤自动分割的新型深度学习架构。我们通过强度归一化和应用数据增强来预处理PET/CT图像,以减轻过拟合。基于U-net架构实现了二维和三维卷积神经网络,这些网络通过基于骰子相似系数(DSC)和二元交叉熵组合的模型损失函数进行优化。通过5折交叉验证,模型将预测的肿瘤分割与真实情况进行比较,3D模型的中位数和平均DSC值分别为0.79和0.69,2D模型分别为0.79和0.67。这些有前景的结果表明,有可能提供一种自动、准确且高效的原发性肿瘤自动分割方法,以改善HNC治疗的临床实践。