Suppr超能文献

基于多模态PET/CT图像的深度学习在头颈部癌患者中的肿瘤分割

Tumor Segmentation in Patients with Head and Neck Cancers Using Deep Learning Based-on Multi-modality PET/CT Images.

作者信息

Naser Mohamed A, van Dijk Lisanne V, He Renjie, Wahid Kareem A, Fuller Clifton D

机构信息

Department of Radiation Oncology, The University of Texas MD AndersonCancer, Houston, TX 77030, USA

出版信息

Head Neck Tumor Segm (2020). 2021;12603:85-98. doi: 10.1007/978-3-030-67194-5_10. Epub 2021 Jan 13.

Abstract

Segmentation of head and neck cancer (HNC) primary tumors onmedical images is an essential, yet labor-intensive, aspect of radiotherapy.PET/CT imaging offers a unique ability to capture metabolic and anatomicinformation, which is invaluable for tumor detection and border definition. Anautomatic segmentation tool that could leverage the dual streams of informationfrom PET and CT imaging simultaneously, could substantially propel HNCradiotherapy workflows forward. Herein, we leverage a multi-institutionalPET/CT dataset of 201 HNC patients, as part of the MICCAI segmentationchallenge, to develop novel deep learning architectures for primary tumor auto-segmentation for HNC patients. We preprocess PET/CT images by normalizingintensities and applying data augmentation to mitigate overfitting. Both 2D and3D convolutional neural networks based on the U-net architecture, which wereoptimized with a model loss function based on a combination of dice similaritycoefficient (DSC) and binary cross entropy, were implemented. The median andmean DSC values comparing the predicted tumor segmentation with the groundtruth achieved by the models through 5-fold cross validation are 0.79 and 0.69for the 3D model, respectively, and 0.79 and 0.67 for the 2D model, respec-tively. These promising results show potential to provide an automatic, accurate,and efficient approach for primary tumor auto-segmentation to improve theclinical practice of HNC treatment.

摘要

在医学图像上对头颈部癌(HNC)原发性肿瘤进行分割是放射治疗中一个重要但劳动强度大的方面。PET/CT成像具有捕捉代谢和解剖信息的独特能力,这对于肿瘤检测和边界定义非常宝贵。一种能够同时利用PET和CT成像的双流信息的自动分割工具,可以极大地推动HNC放射治疗工作流程的发展。在此,我们利用一个包含201名HNC患者的多机构PET/CT数据集,作为医学图像计算方法国际会议(MICCAI)分割挑战赛的一部分,来开发用于HNC患者原发性肿瘤自动分割的新型深度学习架构。我们通过强度归一化和应用数据增强来预处理PET/CT图像,以减轻过拟合。基于U-net架构实现了二维和三维卷积神经网络,这些网络通过基于骰子相似系数(DSC)和二元交叉熵组合的模型损失函数进行优化。通过5折交叉验证,模型将预测的肿瘤分割与真实情况进行比较,3D模型的中位数和平均DSC值分别为0.79和0.69,2D模型分别为0.79和0.67。这些有前景的结果表明,有可能提供一种自动、准确且高效的原发性肿瘤自动分割方法,以改善HNC治疗的临床实践。

相似文献

引用本文的文献

本文引用的文献

1
Deep Learning-based Image Segmentation on Multimodal Medical Imaging.基于深度学习的多模态医学影像图像分割
IEEE Trans Radiat Plasma Med Sci. 2019 Mar;3(2):162-169. doi: 10.1109/trpms.2018.2890359. Epub 2019 Jan 1.
2
Deep Learning for Variational Multimodality Tumor Segmentation in PET/CT.用于PET/CT中变分多模态肿瘤分割的深度学习
Neurocomputing (Amst). 2020 Jun 7;392:277-295. doi: 10.1016/j.neucom.2018.10.099. Epub 2019 Apr 24.
7
Cancer statistics, 2020.癌症统计数据,2020 年。
CA Cancer J Clin. 2020 Jan;70(1):7-30. doi: 10.3322/caac.21590. Epub 2020 Jan 8.
8
3D FULLY CONVOLUTIONAL NETWORKS FOR CO-SEGMENTATION OF TUMORS ON PET-CT IMAGES.用于PET-CT图像上肿瘤联合分割的3D全卷积网络
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:228-231. doi: 10.1109/ISBI.2018.8363561. Epub 2018 May 24.
9
Deep Learning: A Review for the Radiation Oncologist.深度学习:放射肿瘤学家的综述
Front Oncol. 2019 Oct 1;9:977. doi: 10.3389/fonc.2019.00977. eCollection 2019.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验