Sahlsten Jaakko, Jaskari Joel, Wahid Kareem A, Ahmed Sara, Glerean Enrico, He Renjie, Kann Benjamin H, Mäkitie Antti, Fuller Clifton D, Naser Mohamed A, Kaski Kimmo
Department of Computer Science, Aalto University School of Science, Espoo, Finland.
Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Commun Med (Lond). 2024 Jun 8;4(1):110. doi: 10.1038/s43856-024-00528-5.
Radiotherapy is a core treatment modality for oropharyngeal cancer (OPC), where the primary gross tumor volume (GTVp) is manually segmented with high interobserver variability. This calls for reliable and trustworthy automated tools in clinician workflow. Therefore, accurate uncertainty quantification and its downstream utilization is critical.
Here we propose uncertainty-aware deep learning for OPC GTVp segmentation, and illustrate the utility of uncertainty in multiple applications. We examine two Bayesian deep learning (BDL) models and eight uncertainty measures, and utilize a large multi-institute dataset of 292 PET/CT scans to systematically analyze our approach.
We show that our uncertainty-based approach accurately predicts the quality of the deep learning segmentation in 86.6% of cases, identifies low performance cases for semi-automated correction, and visualizes regions of the scans where the segmentations likely fail.
Our BDL-based analysis provides a first-step towards more widespread implementation of uncertainty quantification in OPC GTVp segmentation.
放射治疗是口咽癌(OPC)的核心治疗方式,其中原发大体肿瘤体积(GTVp)通过手动分割,观察者间差异较大。这就需要在临床医生工作流程中使用可靠且值得信赖的自动化工具。因此,准确的不确定性量化及其下游应用至关重要。
在此,我们提出用于OPC GTVp分割的不确定性感知深度学习,并阐述不确定性在多种应用中的效用。我们研究了两种贝叶斯深度学习(BDL)模型和八种不确定性度量,并利用一个包含292例PET/CT扫描的大型多机构数据集系统地分析我们的方法。
我们表明,基于不确定性的方法在86.6%的病例中准确预测了深度学习分割的质量,识别出低性能病例以便进行半自动校正,并可视化了分割可能失败的扫描区域。
我们基于BDL的分析为在OPC GTVp分割中更广泛地实施不确定性量化迈出了第一步。