Suppr超能文献

用于相位操纵的神经网络赋能超表面设计。

Neural network enabled metasurface design for phase manipulation.

作者信息

Jiang Li, Li Xiaozhong, Wu Qingxin, Wang Lianhui, Gao Li

出版信息

Opt Express. 2021 Jan 18;29(2):2521-2528. doi: 10.1364/OE.413079.

Abstract

The phase of electromagnetic waves can be manipulated and tailored by artificial metasurfaces, which can lead to ultra-compact, high-performance metalens, holographic and imaging devices etc. Usually, nanostructured metasurfaces are associated with a large number of geometric parameters, and the multi-parameter optimization for phase design cannot be possibly achieved by conventional time-consuming simulations. Deep learning tools capable of acquiring the relationship between complex nanostructure geometry and electromagnetic responses are best suited for such challenging task. In this work, by innovations in the training methods, we demonstrate that deep neural network can handle six geometric parameters for accurately predicting the phase value, and for the first time, perform direct inverse design of metasurfaces for on-demand phase requirement. In order to satisfy the achromatic metalens design requirements, we also demonstrate simultaneous phase and group delay prediction for near-zero group delay dispersion. Our results suggest significantly improved design capability of complex metasurfaces with the aid of deep learning tools.

摘要

电磁波的相位可以通过人工超表面进行操控和定制,这能够带来超紧凑、高性能的超透镜、全息和成像设备等。通常,纳米结构超表面与大量几何参数相关联,传统的耗时模拟无法实现用于相位设计的多参数优化。能够获取复杂纳米结构几何形状与电磁响应之间关系的深度学习工具最适合此类具有挑战性的任务。在这项工作中,通过训练方法的创新,我们证明深度神经网络可以处理六个几何参数以准确预测相位值,并且首次针对按需相位要求进行超表面的直接逆向设计。为了满足消色差超透镜的设计要求,我们还展示了对接近零群延迟色散的同时相位和群延迟预测。我们的结果表明,借助深度学习工具,复杂超表面的设计能力得到了显著提升。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验