Sola Federica, Canonico Barbara, Montanari Mariele, Volpe Angela, Barattini Chiara, Pellegrino Chiara, Cesarini Erica, Guescini Michele, Battistelli Michela, Ortolani Claudio, Ventola Alfredo, Papa Stefano
Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, 61029, Italy.
AcZon Srl, Monte San Pietro, BO, 40050, Italy.
Nanotechnol Sci Appl. 2021 Mar 8;14:29-48. doi: 10.2147/NSA.S290867. eCollection 2021.
Since most biologically active macromolecules are natural nanostructures, operating in the same scale of biomolecules gives the great advantage to enhance the interaction with cellular components. Noteworthy efforts in nanotechnology, particularly in biomedical and pharmaceutical fields, have propelled a high number of studies on the biological effects of nanomaterials. Moreover, the determination of specific physicochemical properties of nanomaterials is crucial for the evaluation and design of novel safe and efficient therapeutics and diagnostic tools. In this in vitro study, we report a physicochemical characterisation of fluorescent silica nanoparticles (NPs), interacting with biological models (U937 and PBMC cells), describing the specific triggered biologic response.
Flow Cytometric and Confocal analyses are the main method platforms. However TEM, NTA, DLS, and chemical procedures to synthesize NPs were employed.
NT700 NPs, employed in this study, are fluorescent core-shell silica nanoparticles, synthesized through a micelle-assisted method, where the fluorescence energy transfer process, known as FRET, occurs at a high efficiency rate. Using flow cytometry and confocal microscopy, we observed that NT700 NP uptake seemed to be a rapid, concentration-, energy- and cell type-dependent process, which did not induce significant cytotoxic effects. We did not observe a preferred route of internalization, although their size and the possible aggregated state could influence their extrusion. At this level of analysis, our investigation focuses on lysosome and mitochondria pathways, highlighting that both are involved in NP co-localization. Despite the main mitochondria localization, NPs did not induce a significant increase of intracellular ROS, known inductors of apoptosis, during the time course of analyses. Finally, both lymphoid and myeloid cells are able to release NPs, essential to their biosafety.
These data allow to consider NT700 NPs a promising platform for future development of a multifunctional system, by combining imaging and localized therapeutic applications in a unique tool.
由于大多数生物活性大分子都是天然纳米结构,在与生物分子相同的尺度上操作具有增强与细胞成分相互作用的巨大优势。纳米技术领域,尤其是生物医学和制药领域的显著努力推动了大量关于纳米材料生物效应的研究。此外,确定纳米材料的特定物理化学性质对于评估和设计新型安全有效的治疗和诊断工具至关重要。在这项体外研究中,我们报告了荧光二氧化硅纳米颗粒(NPs)与生物模型(U937和PBMC细胞)相互作用的物理化学特征,描述了所引发的特定生物反应。
流式细胞术和共聚焦分析是主要的方法平台。然而,还采用了透射电子显微镜(TEM)、纳米颗粒跟踪分析(NTA)、动态光散射(DLS)以及合成纳米颗粒的化学程序。
本研究中使用的NT700 NPs是通过胶束辅助法合成的荧光核壳二氧化硅纳米颗粒,其中发生了称为荧光共振能量转移(FRET)的荧光能量转移过程,且效率很高。使用流式细胞术和共聚焦显微镜,我们观察到NT700 NP的摄取似乎是一个快速的、浓度、能量和细胞类型依赖性的过程,不会诱导显著的细胞毒性作用。尽管它们的大小和可能的聚集状态可能影响其排出,但我们未观察到优先的内化途径。在这个分析层面,我们的研究聚焦于溶酶体和线粒体途径,突出表明两者都参与了NP的共定位。尽管NP主要定位于线粒体,但在分析的时间进程中,NP并未诱导已知的凋亡诱导剂细胞内活性氧(ROS)的显著增加。最后,淋巴细胞和髓细胞都能够释放NP,这对它们的生物安全性至关重要。
这些数据使得NT700 NPs有望成为未来多功能系统开发的一个平台,通过在一个独特工具中结合成像和局部治疗应用。