State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China.
Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA.
Plant Cell. 2021 Jul 2;33(5):1430-1446. doi: 10.1093/plcell/koab081.
Polyploidy or whole-genome duplication (WGD) is widespread in plants and is a key driver of evolution and speciation, accompanied by rapid and dynamic changes in genomic structure and gene expression. The 3D structure of the genome is intricately linked to gene expression, but its role in transcription regulation following polyploidy and domestication remains unclear. Here, we generated high-resolution (∼2 kb) Hi-C maps for cultivated soybean (Glycine max), wild soybean (Glycine soja), and common bean (Phaseolus vulgaris). We found polyploidization in soybean may induce architecture changes of topologically associating domains and subsequent diploidization led to chromatin topology alteration around chromosome-rearrangement sites. Compared with single-copy and small-scale duplicated genes, WGD genes displayed more long-range chromosomal interactions and were coupled with higher levels of gene expression and chromatin accessibilities but void of DNA methylation. Interestingly, chromatin loop reorganization was involved in expression divergence of the genes during soybean domestication. Genes with chromatin loops were under stronger artificial selection than genes without loops. These findings provide insights into the roles of dynamic chromatin structures on gene expression during polyploidization, diploidization, and domestication of soybean.
多倍体或全基因组加倍(WGD)在植物中广泛存在,是进化和物种形成的关键驱动因素,伴随着基因组结构和基因表达的快速和动态变化。基因组的 3D 结构与基因表达密切相关,但在多倍体和驯化后转录调控中的作用尚不清楚。在这里,我们为栽培大豆(Glycine max)、野生大豆(Glycine soja)和普通菜豆(Phaseolus vulgaris)生成了高分辨率(~2 kb)的 Hi-C 图谱。我们发现,大豆的多倍化可能诱导拓扑关联域的结构变化,随后的二倍化导致染色体重排区域周围染色质拓扑结构的改变。与单拷贝和小尺度重复基因相比,WGD 基因表现出更多的染色体间相互作用,并与更高水平的基因表达和染色质可及性相关,但没有 DNA 甲基化。有趣的是,染色质环重组参与了大豆驯化过程中基因表达的分化。具有染色质环的基因比没有环的基因受到更强的人工选择。这些发现为多倍体化、二倍体化和大豆驯化过程中动态染色质结构对基因表达的作用提供了新的见解。