Suppr超能文献

评估偏度、聚类和探针采样方案对玉米中黄曲霉毒素检测的影响。

Evaluation of the Impact of Skewness, Clustering, and Probe Sampling Plan on Aflatoxin Detection in Corn.

机构信息

University of Illinois at Urbana-Champaign, Urbana, IL, USA.

出版信息

Risk Anal. 2021 Nov;41(11):2065-2080. doi: 10.1111/risa.13721. Epub 2021 Mar 17.

Abstract

Probe sampling plans for aflatoxin in corn attempt to reliably estimate concentrations in bulk corn given complications like skewed contamination distribution and hotspots. To evaluate and improve sampling plans, three sampling strategies (simple random sampling, stratified random sampling, systematic sampling with U.S. GIPSA sampling schemes), three numbers of probes (5, 10, 100, the last a proxy for autosampling), four clustering levels (1, 10, 100, 1,000 kernels/cluster source), and six aflatoxin concentrations (5, 10, 20, 40, 80, 100 ppb) were assessed by Monte-Carlo simulation. Aflatoxin distribution was approximated by PERT and Gamma distributions of experimental aflatoxin data for uncontaminated and naturally contaminated single kernels. The model was validated against published data repeatedly sampling 18 grain lots contaminated with 5.8-680 ppb aflatoxin. All empirical acceptance probabilities fell within the range of simulated acceptance probabilities. Sensitivity analysis with partial rank correlation coefficients found acceptance probability more sensitive to aflatoxin concentration (-0.87) and clustering level (0.28) than number of probes (-0.09) and sampling strategy (0.04). Comparison of operating characteristic curves indicate all sampling strategies have similar average performance at the 20 ppb threshold (0.8-3.5% absolute marginal change), but systematic sampling has larger variability at clustering levels above 100. Taking extra probes improves detection (1.8% increase in absolute marginal change) when aflatoxin is spatially clustered at 1,000 kernels/cluster, but not when contaminated grains are homogenously distributed. Therefore, taking many small samples, for example, autosampling, may increase sampling plan reliability. The simulation is provided as an R Shiny web app for stakeholder use evaluating grain sampling plans.

摘要

玉米中黄曲霉毒素的探测抽样计划旨在可靠估计散装玉米中的浓度,因为存在偏态污染分布和热点等问题。为了评估和改进抽样计划,采用了三种抽样策略(简单随机抽样、分层随机抽样、美国 GIPSA 抽样方案的系统抽样)、三种探针数量(5、10、100,最后一个代表自动采样)、四种聚类水平(1、10、100、1000 个内核/簇源)和六种黄曲霉毒素浓度(5、10、20、40、80、100 ppb)进行蒙特卡罗模拟。黄曲霉毒素的分布通过 PERT 和实验黄曲霉毒素数据的伽马分布来近似,用于未污染和自然污染的单个内核。该模型经过反复验证,从 18 个谷物批次中抽取了 5.8-680 ppb 的黄曲霉毒素。所有经验接受概率都落在模拟接受概率范围内。偏秩相关系数的敏感性分析发现,接受概率对黄曲霉毒素浓度(-0.87)和聚类水平(0.28)比探针数量(-0.09)和抽样策略(0.04)更敏感。操作特征曲线的比较表明,所有抽样策略在 20 ppb 阈值(0.8-3.5%绝对边际变化)下的平均性能相似,但系统抽样在聚类水平高于 100 时具有更大的变异性。在 1000 个内核/簇的空间聚类时,当黄曲霉毒素呈空间聚类时,增加额外的探针会提高检测率(绝对边际变化增加 1.8%),但当污染谷物均匀分布时则不会。因此,例如,采取许多小样本,例如自动采样,可以提高采样计划的可靠性。该模拟作为一个 R Shiny 网络应用程序提供,供利益相关者使用,以评估谷物采样计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/305a/9290973/9441ede1245f/RISA-41-2065-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验