Wen Lulu, Li Xinyang, Zhang Rui, Liang Huawei, Zhang Qitao, Su Chenliang, Zeng Yu-Jia
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China.
ACS Appl Mater Interfaces. 2021 Mar 31;13(12):14181-14188. doi: 10.1021/acsami.0c22767. Epub 2021 Mar 18.
Introducing oxygen vacancy (V) has been considered as an effective and significant method to accelerate the sluggish electrocatalytic nitrogen reduction reaction (NRR). In this work, a series of bimetallic zeolitic imidazolate frameworks based on ZIF-67 and ZIF-8 with varied ratios of Co/Zn have been applied as precursors to prepare V-rich Zn-doped CoO nanopolyhedrons (Zn-CoO) by a low-temperature oxidation strategy. Zn-CoO presents an ammonia yield of 22.71 μg h mg with a high faradaic efficiency of 11.9% for NRR under ambient conditions. The remarkable catalytic performances are believed to result from the plentiful V as the Lewis acid sites and electron-rich Co sites to promote the adsorption and dissociation of N molecules. Remarkably, Zn-CoO also demonstrates a high electrochemical stability. This work presents a guiding method for developing a stable and efficient electrocatalyst for the NRR.
引入氧空位(V)被认为是加速缓慢的电催化氮还原反应(NRR)的一种有效且重要的方法。在这项工作中,一系列基于ZIF-67和ZIF-8且具有不同Co/Zn比例的双金属沸石咪唑酯骨架已被用作前驱体,通过低温氧化策略制备富含V的Zn掺杂CoO纳米多面体(Zn-CoO)。在环境条件下,Zn-CoO的NRR氨产率为22.71 μg h mg,法拉第效率高达11.9%。这些显著的催化性能被认为源于大量作为路易斯酸位点的V和富电子的Co位点,从而促进了N分子的吸附和解离。值得注意的是,Zn-CoO还表现出高电化学稳定性。这项工作为开发用于NRR的稳定高效电催化剂提供了一种指导方法。