Suppr超能文献

深度学习卷积神经网络(DLCNN):释放F-FDG PET/CT在淋巴瘤诊断中的潜力

Deep learning convolutional neural network (DLCNN): unleashing the potential of F-FDG PET/CT in lymphoma.

作者信息

Li Ke, Zhang Ran, Cai Weibo

机构信息

Department of Medical Physics, University of Wisconsin-Madison 1111 Highland Avenue, Madison, WI, USA.

Department of Radiology, University of Wisconsin-Madison 600 Highland Avenue, Madison, WI, USA.

出版信息

Am J Nucl Med Mol Imaging. 2021 Aug 15;11(4):327-331. eCollection 2021.

Abstract

This perspective briefly reviewed the applications of F-FDG PET/CT in the clinical management of lymphoma and the need for lesion segmentation in those applications. It discussed the limitations of existing segmentation technologies and the great potential of using deep learning convolutional neural network (DLCNN) to accomplish automatic lymphoma segmentation and characterizations. Finally, the authors shared perspectives on the technical challenges that need to be addressed to fully unleash the potential of DLCNN and F-FDG PET/CT in the diagnosis, prognosis, and treatment of lymphoma.

摘要

本观点简要回顾了F-FDG PET/CT在淋巴瘤临床管理中的应用以及这些应用中病变分割的必要性。讨论了现有分割技术的局限性以及使用深度学习卷积神经网络(DLCNN)实现淋巴瘤自动分割和特征描述的巨大潜力。最后,作者就充分发挥DLCNN和F-FDG PET/CT在淋巴瘤诊断、预后和治疗方面的潜力所需解决的技术挑战分享了观点。

相似文献

本文引用的文献

6
The role of PET in first-line treatment of Hodgkin lymphoma.正电子发射断层扫描在霍奇金淋巴瘤一线治疗中的作用。
Lancet Haematol. 2021 Jan;8(1):e67-e79. doi: 10.1016/S2352-3026(20)30357-4. Epub 2020 Dec 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验