Suppr超能文献

局部格兰杰因果关系

Local Granger causality.

作者信息

Stramaglia Sebastiano, Scagliarini Tomas, Antonacci Yuri, Faes Luca

机构信息

Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, and INFN, Sezione di Bari, 70126 Bari, Italy.

Dipartimento di Fisica e Chimica, Universitá di Palermo, 90123 Palermo, Italy.

出版信息

Phys Rev E. 2021 Feb;103(2):L020102. doi: 10.1103/PhysRevE.103.L020102.

Abstract

Granger causality (GC) is a statistical notion of causal influence based on prediction via linear vector autoregression. For Gaussian variables it is equivalent to transfer entropy, an information-theoretic measure of time-directed information transfer between jointly dependent processes. We exploit such equivalence and calculate exactly the local Granger causality, i.e., the profile of the information transferred from the driver to the target process at each discrete time point; in this frame, GC is the average of its local version. We show that the variability of the local GC around its mean relates to the interplay between driver and innovation (autoregressive noise) processes, and it may reveal transient instances of information transfer not detectable from its average values. Our approach offers a robust and computationally fast method to follow the information transfer along the time history of linear stochastic processes, as well as of nonlinear complex systems studied in the Gaussian approximation.

摘要

格兰杰因果关系(GC)是一种基于线性向量自回归预测的因果影响统计概念。对于高斯变量,它等同于转移熵,这是一种在联合相关过程之间进行时间定向信息传递的信息论度量。我们利用这种等价性,精确计算局部格兰杰因果关系,即在每个离散时间点从驱动过程传递到目标过程的信息概况;在此框架下,GC是其局部版本的平均值。我们表明,局部GC围绕其均值的变化与驱动过程和创新(自回归噪声)过程之间的相互作用有关,并且它可能揭示从其平均值无法检测到的信息传递瞬态实例。我们的方法提供了一种稳健且计算快速的方法,用于跟踪线性随机过程以及在高斯近似下研究的非线性复杂系统随时间历程的信息传递。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验