Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee 37232.
Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee 37232.
J Neurosci. 2021 Apr 28;41(17):3752-3763. doi: 10.1523/JNEUROSCI.2420-20.2021. Epub 2021 Mar 18.
The nucleus accumbens shell (NAcSh) receives extensive monoaminergic input from multiple midbrain structures. However, little is known how norepinephrine (NE) modulates NAc circuit dynamics. Using a dynamic electrophysiological approach with optogenetics, pharmacology, and drugs acutely restricted by tethering (DART), we explored microcircuit-specific neuromodulatory mechanisms recruited by NE signaling in the NAcSh of parvalbumin (PV)-specific reporter mice. Surprisingly, NE had little direct effect on modulation of synaptic input at medium spiny projection neurons (MSNs). In contrast, we report that NE transmission selectively modulates glutamatergic synapses onto PV-expressing fast-spiking interneurons (PV-INs) by recruiting postsynaptically-localized α-adrenergic receptors (ARs). The synaptic effects of α-AR activity decrease PV-IN-dependent feedforward inhibition onto MSNs evoked via optogenetic stimulation of cortical afferents to the NAcSh. These findings provide insight into a new circuit motif in which NE has a privileged line of communication to tune feedforward inhibition in the NAcSh. The nucleus accumbens (NAc) directs reward-related motivational output by integrating glutamatergic input with diverse neuromodulatory input from monoamine centers. The present study reveals a synapse-specific regulatory mechanism recruited by norepinephrine (NE) signaling within parvalbumin-expressing interneuron (PV-IN) feedforward inhibitory microcircuits. PV-IN-mediated feedforward inhibition in the NAc is instrumental in coordinating NAc output by synchronizing the activity of medium spiny projection neurons (MSNs). By negatively regulating glutamatergic transmission onto PV-INs via α-adrenergic receptors (ARs), NE diminishes feedforward inhibition onto MSNs to promote NAc output. These findings elucidate previously unknown microcircuit mechanisms recruited by the historically overlooked NE system in the NAc.
伏隔核壳(NAcSh)接收来自多个中脑结构的广泛单胺能输入。然而,关于去甲肾上腺素(NE)如何调节 NAc 回路动力学的知识甚少。使用具有光遗传学、药理学和通过系绳(DART)急性限制药物的动态电生理学方法,我们在 PV-特异性报告小鼠的 NAcSh 中探索了由 NE 信号招募的微电路特异性神经调制机制。令人惊讶的是,NE 对中间棘投射神经元(MSNs)上突触输入的调制几乎没有直接影响。相比之下,我们报告说,NE 传递通过招募突触后定位的α-肾上腺素能受体(AR)选择性调节谷氨酸能突触到表达快速放电的 PV-中间神经元(PV-INs)。通过光遗传刺激皮质传入到 NAcSh 来诱发 PV-IN 依赖性前馈抑制时,α-AR 活性的突触效应会降低 MSNs 上的谷氨酸能突触。这些发现提供了一个新的电路模式的见解,其中 NE 具有与来自单胺能中心的各种神经调制输入进行交流的特权线路,以调节 NAcSh 中的前馈抑制。伏隔核(NAc)通过整合谷氨酸能输入和来自单胺能中心的各种神经调制输入来指导与奖励相关的动机输出。本研究揭示了 NE 信号在表达 PV 的中间神经元(PV-IN)前馈抑制微电路中募集的突触特异性调节机制。NAc 中的 PV-IN 介导的前馈抑制对于协调 NAc 输出至关重要,它通过同步中间棘投射神经元(MSNs)的活动来实现。通过通过α-肾上腺素能受体(AR)负调节谷氨酸能传入到 PV-INs,NE 减弱了对 MSNs 的前馈抑制,从而促进了 NAc 的输出。这些发现阐明了先前未知的微电路机制,这些机制被 NAc 中历史上被忽视的 NE 系统招募。