Suppr超能文献

一个用于理解重度抑郁症的预测编码框架。

A Predictive Coding Framework for Understanding Major Depression.

作者信息

Gilbert Jessica R, Wusinich Christina, Zarate Carlos A

机构信息

Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.

出版信息

Front Hum Neurosci. 2022 Mar 3;16:787495. doi: 10.3389/fnhum.2022.787495. eCollection 2022.

Abstract

Predictive coding models of brain processing propose that top-down cortical signals promote efficient neural signaling by carrying predictions about incoming sensory information. These "priors" serve to constrain bottom-up signal propagation where prediction errors are carried via feedforward mechanisms. Depression, traditionally viewed as a disorder characterized by negative cognitive biases, is associated with disrupted reward prediction error encoding and signaling. Accumulating evidence also suggests that depression is characterized by impaired local and long-range prediction signaling across multiple sensory domains. This review highlights the electrophysiological and neuroimaging evidence for disrupted predictive processing in depression. The discussion is framed around the manner in which disrupted generative predictions about the sensorium could lead to depressive symptomatology, including anhedonia and negative bias. In particular, the review focuses on studies of sensory deviance detection and reward processing, highlighting research evidence for both disrupted generative predictions and prediction error signaling in depression. The role of the monoaminergic and glutamatergic systems in predictive coding processes is also discussed. This review provides a novel framework for understanding depression using predictive coding principles and establishes a foundational roadmap for potential future research.

摘要

大脑处理的预测编码模型提出,自上而下的皮层信号通过携带关于传入感觉信息的预测来促进高效的神经信号传递。这些“先验信息”用于约束自下而上的信号传播,其中预测误差通过前馈机制传递。传统上被视为以负性认知偏差为特征的疾病的抑郁症,与奖励预测误差编码和信号传递中断有关。越来越多的证据还表明,抑郁症的特征是多个感觉领域的局部和远程预测信号受损。本综述强调了抑郁症中预测处理中断的电生理和神经影像学证据。讨论围绕对感觉器官的生成预测中断可能导致抑郁症状(包括快感缺失和负性偏差)的方式展开。特别是,本综述重点关注感觉偏差检测和奖励处理的研究,突出了抑郁症中生成预测和预测误差信号传递均中断的研究证据。还讨论了单胺能和谷氨酸能系统在预测编码过程中的作用。本综述提供了一个使用预测编码原理理解抑郁症的新框架,并为未来潜在的研究建立了基础路线图。

相似文献

1
A Predictive Coding Framework for Understanding Major Depression.一个用于理解重度抑郁症的预测编码框架。
Front Hum Neurosci. 2022 Mar 3;16:787495. doi: 10.3389/fnhum.2022.787495. eCollection 2022.

引用本文的文献

6
A new predictive coding model for a more comprehensive account of delusions.一种用于更全面解释妄想的新预测编码模型。
Lancet Psychiatry. 2024 Apr;11(4):295-302. doi: 10.1016/S2215-0366(23)00411-X. Epub 2024 Jan 16.

本文引用的文献

2
Mismatch negativity in patients with major depressive disorder: A meta-analysis.重性抑郁障碍患者的失匹配负波:一项荟萃分析。
Clin Neurophysiol. 2021 Oct;132(10):2654-2665. doi: 10.1016/j.clinph.2021.06.019. Epub 2021 Jul 23.
4
7
Pharmacological evidence for the implication of noradrenaline in effort.药理学证据表明去甲肾上腺素在努力中的作用。
PLoS Biol. 2020 Oct 12;18(10):e3000793. doi: 10.1371/journal.pbio.3000793. eCollection 2020 Oct.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验