Suppr超能文献

通过整合病毒全基因组序列和药物化学结构,对 SARS-CoV-2 的抗病毒药物进行优先级排序。

Prioritizing antiviral drugs against SARS-CoV-2 by integrating viral complete genome sequences and drug chemical structures.

机构信息

School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, China.

College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China.

出版信息

Sci Rep. 2021 Mar 18;11(1):6248. doi: 10.1038/s41598-021-83737-5.

Abstract

The outbreak of a novel febrile respiratory disease called COVID-19, caused by a newfound coronavirus SARS-CoV-2, has brought a worldwide attention. Prioritizing approved drugs is critical for quick clinical trials against COVID-19. In this study, we first manually curated three Virus-Drug Association (VDA) datasets. By incorporating VDAs with the similarity between drugs and that between viruses, we constructed a heterogeneous Virus-Drug network. A novel Random Walk with Restart method (VDA-RWR) was then developed to identify possible VDAs related to SARS-CoV-2. We compared VDA-RWR with three state-of-the-art association prediction models based on fivefold cross-validations (CVs) on viruses, drugs and virus-drug associations on three datasets. VDA-RWR obtained the best AUCs for the three fivefold CVs, significantly outperforming other methods. We found two small molecules coming together on the three datasets, that is, remdesivir and ribavirin. These two chemical agents have higher molecular binding energies of - 7.0 kcal/mol and - 6.59 kcal/mol with the domain bound structure of the human receptor angiotensin converting enzyme 2 (ACE2) and the SARS-CoV-2 spike protein, respectively. Interestingly, for the first time, experimental results suggested that navitoclax could be potentially applied to stop SARS-CoV-2 and remains to further validation.

摘要

新型发热性呼吸道疾病 COVID-19 的爆发是由新型冠状病毒 SARS-CoV-2 引起的,引起了全球关注。优先考虑已批准的药物对于 COVID-19 的快速临床试验至关重要。在这项研究中,我们首先手动整理了三个病毒-药物关联 (VDA) 数据集。通过将 VDAs 与药物之间的相似性和病毒之间的相似性相结合,我们构建了一个异质的病毒-药物网络。然后,我们开发了一种新的随机游走重新启动方法 (VDA-RWR),用于识别可能与 SARS-CoV-2 相关的 VDAs。我们将 VDA-RWR 与三种基于五重交叉验证 (CV) 的最先进的关联预测模型进行了比较,CV 分别针对病毒、药物和三个数据集上的病毒-药物关联。VDA-RWR 在三个五重 CV 中的 AUC 最佳,明显优于其他方法。我们在三个数据集上发现了两种小分子,即瑞德西韦和利巴韦林。这两种化学物质与人类血管紧张素转化酶 2 (ACE2) 受体域结合结构和 SARS-CoV-2 刺突蛋白的结合能分别为-7.0 kcal/mol 和-6.59 kcal/mol。有趣的是,实验结果首次表明 navitoclax 可能被用于阻止 SARS-CoV-2,有待进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1b6/7973547/fd08e7dbdcbe/41598_2021_83737_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验