Suppr超能文献

基于自动定位和深度卷积生成对抗网络的计算机断层扫描图像中肝脏局灶性病变分类:一项初步研究。

Automatic localization and deep convolutional generative adversarial network-based classification of focal liver lesions in computed tomography images: A preliminary study.

作者信息

Gupta Pushpanjali, Hsu Yao-Chun, Liang Li-Lin, Chu Yuan-Chia, Chu Chia-Sheng, Wu Jaw-Liang, Chen Jian-An, Tseng Wei-Hsiu, Yang Ya-Ching, Lee Teng-Yu, Hung Che-Lun, Wu Chun-Ying

机构信息

Division of Translational Research, Taipei Veterans General Hospital, Taipei, Taiwan.

Health Innovation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.

出版信息

J Gastroenterol Hepatol. 2025 Jan;40(1):166-176. doi: 10.1111/jgh.16803. Epub 2024 Nov 14.

Abstract

BACKGROUND AND AIM

Computed tomography of the abdomen exhibits subtle and complex features of liver lesions, subjectively interpreted by physicians. We developed a deep learning-based localization and classification (DLLC) system for focal liver lesions (FLLs) in computed tomography imaging that could assist physicians in more robust clinical decision-making.

METHODS

We conducted a retrospective study (approval no. EMRP-109-058) on 1589 patients with 17 335 slices with 3195 FLLs using data from January 2004 to December 2020. The training set included 1272 patients (male: 776, mean age 62 ± 10.9), and the test set included 317 patients (male: 228, mean age 57 ± 11.8). The slices were annotated by annotators with different experience levels, and the DLLC system was developed using generative adversarial networks for data augmentation. A comparative analysis was performed for the DLLC system versus physicians using external data.

RESULTS

Our DLLC system demonstrated mean average precision at 0.81 for localization. The system's overall accuracy for multiclass classifications was 0.97 (95% confidence interval [CI]: 0.95-0.99). Considering FLLs ≤ 3 cm, the system achieved an accuracy of 0.83 (95% CI: 0.68-0.98), and for size > 3 cm, the accuracy was 0.87 (95% CI: 0.77-0.97) for localization. Furthermore, during classification, the accuracy was 0.95 (95% CI: 0.92-0.98) for FLLs ≤ 3 cm and 0.97 (95% CI: 0.94-1.00) for FLLs > 3 cm.

CONCLUSION

This system can provide an accurate and non-invasive method for diagnosing liver conditions, making it a valuable tool for hepatologists and radiologists.

摘要

背景与目的

腹部计算机断层扫描显示肝脏病变的特征细微且复杂,需由医生进行主观解读。我们开发了一种基于深度学习的计算机断层扫描成像中局灶性肝病变(FLL)定位与分类(DLLC)系统,可协助医生做出更可靠的临床决策。

方法

我们使用2004年1月至2020年12月的数据,对1589例患者的17335层切片及3195个FLL进行了回顾性研究(批准号:EMRP - 109 - 058)。训练集包括1272例患者(男性776例,平均年龄62±10.9岁),测试集包括317例患者(男性228例,平均年龄57±11.8岁)。切片由不同经验水平的标注人员进行标注,并使用生成对抗网络进行数据增强来开发DLLC系统。使用外部数据对DLLC系统与医生进行了对比分析。

结果

我们的DLLC系统在定位方面的平均精度为0.81。该系统多类别分类的总体准确率为0.97(95%置信区间[CI]:0.95 - 0.99)。对于直径≤3 cm的FLL,系统定位准确率为0.83(95% CI:0.68 - 0.98);对于直径>3 cm的FLL,定位准确率为0.87(95% CI:0.77 - 0.97)。此外,在分类方面,直径≤3 cm的FLL准确率为0.95(95% CI:0.92 - 0.98),直径>3 cm的FLL准确率为0.97(95% CI:0.94 - 1.00)。

结论

该系统可为肝脏疾病诊断提供一种准确且无创的方法,使其成为肝病学家和放射科医生的宝贵工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/446a/11771580/6cc1b055391a/JGH-40-166-g007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验