Suppr超能文献

循环一致性生成对抗网络:对超低剂量 CT 评估肺结核中降低辐射剂量和改善图像质量的影响。

Cycle-Consistent Generative Adversarial Network: Effect on Radiation Dose Reduction and Image Quality Improvement in Ultralow-Dose CT for Evaluation of Pulmonary Tuberculosis.

机构信息

Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.

The D-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.

出版信息

Korean J Radiol. 2021 Jun;22(6):983-993. doi: 10.3348/kjr.2020.0988. Epub 2021 Mar 9.

Abstract

OBJECTIVE

To investigate the image quality of ultralow-dose CT (ULDCT) of the chest reconstructed using a cycle-consistent generative adversarial network (CycleGAN)-based deep learning method in the evaluation of pulmonary tuberculosis.

MATERIALS AND METHODS

Between June 2019 and November 2019, 103 patients (mean age, 40.8 ± 13.6 years; 61 men and 42 women) with pulmonary tuberculosis were prospectively enrolled to undergo standard-dose CT (120 kVp with automated exposure control), followed immediately by ULDCT (80 kVp and 10 mAs). The images of the two successive scans were used to train the CycleGAN framework for image-to-image translation. The denoising efficacy of the CycleGAN algorithm was compared with that of hybrid and model-based iterative reconstruction. Repeated-measures analysis of variance and Wilcoxon signed-rank test were performed to compare the objective measurements and the subjective image quality scores, respectively.

RESULTS

With the optimized CycleGAN denoising model, using the ULDCT images as input, the peak signal-to-noise ratio and structural similarity index improved by 2.0 dB and 0.21, respectively. The CycleGAN-generated denoised ULDCT images typically provided satisfactory image quality for optimal visibility of anatomic structures and pathological findings, with a lower level of image noise (mean ± standard deviation [SD], 19.5 ± 3.0 Hounsfield unit [HU]) than that of the hybrid (66.3 ± 10.5 HU, < 0.001) and a similar noise level to model-based iterative reconstruction (19.6 ± 2.6 HU, > 0.908). The CycleGAN-generated images showed the highest contrast-to-noise ratios for the pulmonary lesions, followed by the model-based and hybrid iterative reconstruction. The mean effective radiation dose of ULDCT was 0.12 mSv with a mean 93.9% reduction compared to standard-dose CT.

CONCLUSION

The optimized CycleGAN technique may allow the synthesis of diagnostically acceptable images from ULDCT of the chest for the evaluation of pulmonary tuberculosis.

摘要

目的

利用基于循环一致性生成对抗网络(CycleGAN)的深度学习方法,探讨用于评估肺结核的超低剂量 CT(ULDCT)胸部重建的图像质量。

材料与方法

本研究为前瞻性研究,于 2019 年 6 月至 2019 年 11 月纳入 103 例肺结核患者(平均年龄 40.8±13.6 岁;61 例男性,42 例女性),所有患者均先后接受标准剂量 CT(120 kVp 自动管电流调节)和 ULDCT(80 kVp 和 10 mAs)扫描。将两次连续扫描的图像用于训练 CycleGAN 框架进行图像到图像的转换。比较 CycleGAN 算法、混合迭代重建和模型迭代重建的去噪效果。采用重复测量方差分析和 Wilcoxon 符号秩检验分别比较客观测量指标和主观图像质量评分。

结果

利用优化后的 CycleGAN 去噪模型,以 ULDCT 图像作为输入,峰值信噪比和结构相似性指数分别提高了 2.0 dB 和 0.21。利用 CycleGAN 生成的去噪 ULDCT 图像,在提供令人满意的图像质量方面表现良好,能够清晰显示解剖结构和病变,噪声水平较低(均值±标准差,19.5±3.0 HU),明显低于混合迭代重建(66.3±10.5 HU,<0.001),与模型迭代重建相似(19.6±2.6 HU,>0.908)。CycleGAN 生成的图像对肺病变的对比噪声比最高,其次是模型迭代重建和混合迭代重建。ULDCT 的有效辐射剂量均值为 0.12 mSv,与标准剂量 CT 相比降低了 93.9%。

结论

经优化的 CycleGAN 技术可从 ULDCT 胸部图像中合成具有诊断价值的图像,用于评估肺结核。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1026/8154783/617ebaf3cf27/kjr-22-983-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验