National University of Science and Technology (MISIS), Moscow 119049, Russia.
M. V. Lomonosov Moscow State University, Moscow 119991, Russia.
ACS Appl Mater Interfaces. 2021 Mar 31;13(12):14458-14469. doi: 10.1021/acsami.0c21002. Epub 2021 Mar 19.
Remote control of cells and single molecules by magnetic nanoparticles in nonheating external magnetic fields is a perspective approach for many applications such as cancer treatment and enzyme activity regulation. However, the possibility and mechanisms of direct effects of small individual magnetic nanoparticles on such processes in magneto-mechanical experiments still remain unclear. In this work, we have shown remote-controlled mechanical dissociation of short DNA duplexes (18-60 bp) under the influence of nonheating low-frequency alternating magnetic fields using individual 11 nm magnetic nanoparticles. The developed technique allows (1) simultaneous manipulation of millions of individual DNA molecules and (2) evaluation of energies of intermolecular interactions in short DNA duplexes or in other molecules. Finally, we have shown that DNA duplexes dissociation is mediated by mechanical stress and produced by the movement of magnetic nanoparticles in magnetic fields, but not by local overheating. The presented technique opens a new avenue for high-precision manipulation of DNA and generation of biosensors for quantification of energies of intermolecular interaction.
在非加热外磁场中,通过磁性纳米粒子对细胞和单个分子进行远程控制,是许多应用(如癌症治疗和酶活性调节)的一种有前景的方法。然而,在磁力学实验中,小的单个磁性纳米粒子对这些过程的直接影响的可能性和机制仍然不清楚。在这项工作中,我们使用单个 11nm 磁性纳米粒子,在非加热低频交变磁场的影响下,证明了短 DNA 双链体(18-60bp)的远程机械解离。所开发的技术允许(1)同时操纵数百万个单个 DNA 分子,以及(2)评估短 DNA 双链体或其他分子中分子间相互作用的能量。最后,我们表明 DNA 双链体的解离是由机械应力介导的,并由磁场中磁性纳米粒子的运动产生,而不是由局部过热产生。所提出的技术为 DNA 的高精度操纵和生成用于量化分子间相互作用能量的生物传感器开辟了新途径。