Suppr超能文献

标签 BiFC 技术允许在活细胞中对蛋白质-蛋白质相互作用进行长期的单分子追踪。

TagBiFC technique allows long-term single-molecule tracking of protein-protein interactions in living cells.

机构信息

State Key Laboratory of Membrane Biology, Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China.

Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.

出版信息

Commun Biol. 2021 Mar 19;4(1):378. doi: 10.1038/s42003-021-01896-7.

Abstract

Protein-protein interactions (PPIs) are critical for cellular activity regulation. Visualization of PPIs using bimolecular fluorescence complementation (BiFC) techniques helps to understand how PPIs implement their functions. However, current BiFC is based on fluorescent proteins and the brightness and photostability are suboptimal for single molecule tracking experiments, resulting in either low spatiotemporal resolution or incapability of tracking for extended time course. Here, we developed the TagBiFC technique based on split HaloTag, a self-labeling tag that could conjugate an organic dye molecule and thus offered better brightness and photostability than fluorescent proteins for PPI visualization inside living cells. Through screening and optimization, we demonstrated that the reconstituted HaloTag exhibited higher localization precision and longer tracking length than previous methods. Using TagBiFC, we reveal that the dynamic interactions of transcription factor dimers with chromatin DNA are distinct and closely related to their dimeric states, indicating a general regulatory mechanism for these kinds of transcription factors. In addition, we also demonstrated the advantageous applications of TagBiFC in single nucleosome imaging, light-burden imaging of single mRNA, low background imaging of cellular structures. We believe these superior properties of our TagBiFC system will have broad applications in the studies of single molecule imaging inside living cells.

摘要

蛋白质-蛋白质相互作用 (PPIs) 对细胞活动的调节至关重要。使用双分子荧光互补 (BiFC) 技术可视化 PPIs 有助于了解 PPIs 如何发挥其功能。然而,目前的 BiFC 基于荧光蛋白,其亮度和光稳定性对于单分子跟踪实验来说并不理想,导致时空分辨率低或无法长时间跟踪。在这里,我们基于 HaloTag 开发了 TagBiFC 技术,HaloTag 是一种自标记标签,可以与有机染料分子结合,因此比荧光蛋白在活细胞内可视化 PPI 具有更好的亮度和光稳定性。通过筛选和优化,我们证明了重组的 HaloTag 比以前的方法具有更高的定位精度和更长的跟踪长度。使用 TagBiFC,我们揭示了转录因子二聚体与染色质 DNA 的动态相互作用是不同的,并且与它们的二聚体状态密切相关,这表明了这些转录因子的一般调节机制。此外,我们还证明了 TagBiFC 在单核小体成像、单个 mRNA 的光负荷成像、细胞结构的低背景成像中的优势应用。我们相信,我们的 TagBiFC 系统的这些优越特性将在活细胞内的单分子成像研究中具有广泛的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37f1/7979928/4bc3dc4c6217/42003_2021_1896_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验