Suppr超能文献

MXene-石墨烯场效应晶体管对流感病毒和新型冠状病毒的传感检测

MXene-Graphene Field-Effect Transistor Sensing of Influenza Virus and SARS-CoV-2.

作者信息

Li Yanxiao, Peng Zhekun, Holl Natalie J, Hassan Md Rifat, Pappas John M, Wei Congjie, Izadi Omid Hoseini, Wang Yang, Dong Xiangyang, Wang Cheng, Huang Yue-Wern, Kim DongHyun, Wu Chenglin

机构信息

Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States.

Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65401, United States.

出版信息

ACS Omega. 2021 Mar 2;6(10):6643-6653. doi: 10.1021/acsomega.0c05421. eCollection 2021 Mar 16.

Abstract

An MXene-graphene field-effect transistor (FET) sensor for both influenza virus and 2019-nCoV sensing was developed and characterized. The developed sensor combines the high chemical sensitivity of MXene and the continuity of large-area high-quality graphene to form an ultra-sensitive virus-sensing transduction material (VSTM). Through polymer linking, we are able to utilize antibody-antigen binding to achieve electrochemical signal transduction when viruses are deposited onto the VSTM surface. The MXene-graphene VSTM was integrated into a microfluidic channel that can directly receive viruses in solution. The developed sensor was tested with various concentrations of antigens from two viruses: inactivated influenza A (H1N1) HA virus ranging from 125 to 250,000 copies/mL and a recombinant 2019-nCoV spike protein ranging from 1 fg/mL to 10 pg/mL. The average response time was about ∼50 ms, which is significantly faster than the existing real-time reverse transcription-polymerase chain reaction method (>3 h). The low limit of detection (125 copies/mL for the influenza virus and 1 fg/mL for the recombinant 2019-nCoV spike protein) has demonstrated the sensitivity of the MXene-graphene VSTM on the FET platform to virus sensing. Especially, the high signal-to-viral load ratio (∼10% change in source-drain current and gate voltage) also demonstrates the ultra-sensitivity of the developed MXene-graphene FET sensor. In addition, the specificity of the sensor was also demonstrated by depositing the inactivated influenza A (H1N1) HA virus and the recombinant 2019-nCoV spike protein onto microfluidic channels with opposite antibodies, producing signal differences that are about 10 times lower. Thus, we have successfully fabricated a relatively low-cost, ultrasensitive, fast-responding, and specific inactivated influenza A (H1N1) and 2019-nCoV sensor with the MXene-graphene VSTM.

摘要

开发并表征了一种用于流感病毒和2019新型冠状病毒(2019 - nCoV)传感的MXene - 石墨烯场效应晶体管(FET)传感器。所开发的传感器结合了MXene的高化学灵敏度和大面积高质量石墨烯的连续性,形成了一种超灵敏的病毒传感转导材料(VSTM)。通过聚合物连接,当病毒沉积在VSTM表面时,我们能够利用抗体 - 抗原结合来实现电化学信号转导。MXene - 石墨烯VSTM被集成到一个可以直接接收溶液中病毒的微流控通道中。使用两种病毒的不同浓度抗原对所开发的传感器进行了测试:灭活甲型流感(H1N1)HA病毒浓度范围为125至250,000拷贝/毫升,重组2019 - nCoV刺突蛋白浓度范围为1飞克/毫升至10皮克/毫升。平均响应时间约为50毫秒,这明显快于现有的实时逆转录 - 聚合酶链反应方法(>3小时)。低检测限(流感病毒为125拷贝/毫升,重组2019 - nCoV刺突蛋白为1飞克/毫升)证明了FET平台上MXene - 石墨烯VSTM对病毒传感的灵敏度。特别是,高信号与病毒载量比(源漏电流和栅极电压变化约10%)也证明了所开发的MXene - 石墨烯FET传感器的超灵敏性。此外,通过将灭活甲型流感(H1N1)HA病毒和重组2019 - nCoV刺突蛋白沉积到带有相反抗体的微流控通道上,也证明了传感器的特异性,产生的信号差异约低10倍。因此,我们成功地用MXene - 石墨烯VSTM制造了一种相对低成本、超灵敏、快速响应且特异的灭活甲型流感(H1N1)和2019 - nCoV传感器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/094c/7970488/7ad3b0876e9b/ao0c05421_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验