Martin Erwann, Ernoult Maxence, Laydevant Jérémie, Li Shuai, Querlioz Damien, Petrisor Teodora, Grollier Julie
Thales Research and Technology, 91767 Palaiseau, France.
Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France.
iScience. 2021 Feb 20;24(3):102222. doi: 10.1016/j.isci.2021.102222. eCollection 2021 Mar 19.
Finding spike-based learning algorithms that can be implemented within the local constraints of neuromorphic systems, while achieving high accuracy, remains a formidable challenge. Equilibrium propagation is a promising alternative to backpropagation as it only involves local computations, but hardware-oriented studies have so far focused on rate-based networks. In this work, we develop a spiking neural network algorithm called EqSpike, compatible with neuromorphic systems, which learns by equilibrium propagation. Through simulations, we obtain a test recognition accuracy of 97.6% on the MNIST handwritten digits dataset (Mixed National Institute of Standards and Technology), similar to rate-based equilibrium propagation, and comparing favorably to alternative learning techniques for spiking neural networks. We show that EqSpike implemented in silicon neuromorphic technology could reduce the energy consumption of inference and training, respectively, by three orders and two orders of magnitude compared to graphics processing units. Finally, we also show that during learning, EqSpike weight updates exhibit a form of spike-timing-dependent plasticity, highlighting a possible connection with biology.
找到能够在神经形态系统的局部约束条件下实现,同时又能达到高精度的基于脉冲的学习算法,仍然是一项艰巨的挑战。平衡传播是反向传播的一种有前景的替代方法,因为它只涉及局部计算,但迄今为止面向硬件的研究主要集中在基于速率的网络上。在这项工作中,我们开发了一种名为EqSpike的脉冲神经网络算法,它与神经形态系统兼容,并通过平衡传播进行学习。通过模拟,我们在MNIST手写数字数据集(美国国家标准与技术研究院混合数据集)上获得了97.6%的测试识别准确率,与基于速率的平衡传播相似,并且优于脉冲神经网络的其他学习技术。我们表明,与图形处理单元相比,采用硅神经形态技术实现的EqSpike可以分别将推理和训练的能耗降低三个数量级和两个数量级。最后,我们还表明,在学习过程中,EqSpike的权重更新表现出一种脉冲时间依赖可塑性的形式, 突出了与生物学的可能联系。