Suppr超能文献

周期性音高感知第三部分:敏感性与弹珠机波动性

Periodicity Pitch Perception Part III: Sensibility and Pachinko Volatility.

作者信息

Feldhoff Frank, Toepfer Hannes, Harczos Tamas, Klefenz Frank

机构信息

Advanced Electromagnetics Group, Technische Universität Ilmenau, Ilmenau, Germany.

Fraunhofer-Institut für Digitale Medientechnologie, Ilmenau, Germany.

出版信息

Front Neurosci. 2022 Mar 8;16:736642. doi: 10.3389/fnins.2022.736642. eCollection 2022.

Abstract

Neuromorphic computer models are used to explain sensory perceptions. Auditory models generate cochleagrams, which resemble the spike distributions in the auditory nerve. Neuron ensembles along the auditory pathway transform sensory inputs step by step and at the end pitch is represented in auditory categorical spaces. In two previous articles in the series on periodicity pitch perception an extended auditory model had been successfully used for explaining periodicity pitch proved for various musical instrument generated tones and sung vowels. In this third part in the series the focus is on octopus cells as they are central sensitivity elements in auditory cognition processes. A powerful numerical model had been devised, in which auditory nerve fibers (ANFs) spike events are the inputs, triggering the impulse responses of the octopus cells. Efficient algorithms are developed and demonstrated to explain the behavior of octopus cells with a focus on a simple event-based hardware implementation of a layer of octopus neurons. The main finding is, that an octopus' cell model in a local receptive field fine-tunes to a specific trajectory by a spike-timing-dependent plasticity (STDP) learning rule with synaptic pre-activation and the dendritic back-propagating signal as post condition. Successful learning explains away the teacher and there is thus no need for a temporally precise control of plasticity that distinguishes between learning and retrieval phases. Pitch learning is cascaded: At first octopus cells respond individually by self-adjustment to specific trajectories in their local receptive fields, then unions of octopus cells are collectively learned for pitch discrimination. Pitch estimation by inter-spike intervals is shown exemplary using two input scenarios: a simple sinus tone and a sung vowel. The model evaluation indicates an improvement in pitch estimation on a fixed time-scale.

摘要

神经形态计算机模型用于解释感官知觉。听觉模型生成耳蜗图,其类似于听神经中的尖峰分布。沿着听觉通路的神经元集合逐步转换感官输入,最终音高在听觉分类空间中得到体现。在关于周期性音高感知系列的前两篇文章中,一个扩展的听觉模型已成功用于解释各种乐器产生的音调以及歌唱元音的周期性音高。在该系列的第三部分中,重点是章鱼细胞,因为它们是听觉认知过程中的核心敏感元件。已经设计了一个强大的数值模型,其中听神经纤维(ANF)的尖峰事件作为输入,触发章鱼细胞的冲动反应。开发并展示了高效算法,以解释章鱼细胞的行为,重点是基于简单事件的章鱼神经元层的硬件实现。主要发现是,章鱼细胞模型在局部感受野中通过依赖于尖峰时间的可塑性(STDP)学习规则进行微调,以适应特定轨迹,其中突触预激活和树突反向传播信号作为后置条件。成功的学习无需教师指导,因此无需在时间上精确控制区分学习和检索阶段的可塑性。音高学习是级联的:首先,章鱼细胞通过自我调整在其局部感受野中对特定轨迹单独做出反应,然后章鱼细胞的组合被集体学习用于音高辨别。通过尖峰间隔进行音高估计在两种输入场景下得到了示例展示:一个简单的正弦音调以及一个歌唱元音。模型评估表明在固定时间尺度上音高估计有所改善。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba78/8959216/4d5d1c2faa0f/fnins-16-736642-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验