Suppr超能文献

现场可部署的唾液 SARS-CoV-2 快速诊断检测

Field-deployable, rapid diagnostic testing of saliva for SARS-CoV-2.

机构信息

Columbia University Irving Medical Center, New York, NY, USA.

New York Presbyterian Hospital, New York, NY, USA.

出版信息

Sci Rep. 2021 Mar 9;11(1):5448. doi: 10.1038/s41598-021-84792-8.

Abstract

To safely re-open economies and prevent future outbreaks, rapid, frequent, point-of-need, SARS-CoV-2 diagnostic testing is necessary. However, existing field-deployable COVID-19 testing methods require the use of uncomfortable swabs and trained providers in PPE, while saliva-based methods must be transported to high complexity laboratories for testing. Here, we report the development and clinical validation of High-Performance Loop-mediated isothermal Amplification (HP-LAMP), a rapid, saliva-based, SARS-CoV-2 test with a limit of detection of 1.4 copies of virus per µl of saliva and a sensitivity and specificity with clinical samples of > 96%, on par with traditional RT-PCR based methods using swabs, but can deliver results using only a single fluid transfer step and simple heat block. Testing of 120 patient samples in 40 pools comprised of 5 patient samples each with either all negative or a single positive patient sample was 100% accurate. Thus, HP-LAMP may enable rapid and accurate results in the field using saliva, without need of a high-complexity laboratory.

摘要

为了安全地重新开放经济并预防未来的疫情爆发,快速、频繁、按需的 SARS-CoV-2 诊断检测是必要的。然而,现有的现场部署的 COVID-19 检测方法需要使用不舒适的拭子和穿着个人防护装备的训练有素的医护人员,而基于唾液的方法必须运送到高复杂度实验室进行检测。在这里,我们报告了高通量环介导等温扩增(HP-LAMP)的开发和临床验证,这是一种快速、基于唾液的 SARS-CoV-2 检测方法,其检测限为每微升唾液中 1.4 个病毒拷贝,对临床样本的灵敏度和特异性均超过 96%,与使用拭子的传统基于 RT-PCR 的方法相当,但仅使用单个流体转移步骤和简单的热块即可提供结果。对 40 个包含 5 个患者样本的样本池中的 120 个患者样本进行的测试,其结果均为 100%准确。因此,HP-LAMP 可以在现场使用唾液进行快速准确的检测,而无需高复杂度实验室。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b3f/7943555/8a0bcf9d4044/41598_2021_84792_Fig1_HTML.jpg

相似文献

1
Field-deployable, rapid diagnostic testing of saliva for SARS-CoV-2.
Sci Rep. 2021 Mar 9;11(1):5448. doi: 10.1038/s41598-021-84792-8.
8
Saliva is Comparable to Nasopharyngeal Swabs for Molecular Detection of SARS-CoV-2.
Microbiol Spectr. 2021 Sep 3;9(1):e0016221. doi: 10.1128/Spectrum.00162-21. Epub 2021 Aug 18.
9
Evaluation of the SARS-CoV-2 RNA detection reagent LAMPdirect Genelyzer KIT using nasopharyngeal swab and saliva samples.
Diagn Microbiol Infect Dis. 2024 Jul;109(3):116297. doi: 10.1016/j.diagmicrobio.2024.116297. Epub 2024 Apr 4.
10
Point-of-care testing for COVID-19: a simple two-step molecular diagnostic development and validation during the SARS-CoV-2 pandemic.
Mem Inst Oswaldo Cruz. 2024 Oct 4;119:e230236. doi: 10.1590/0074-02760230236. eCollection 2024.

引用本文的文献

2
Development of an integrated sample amplification control for salivary point-of-care pathogen testing.
Anal Chim Acta. 2024 Jan 25;1287:342072. doi: 10.1016/j.aca.2023.342072. Epub 2023 Nov 29.
3
Development of an Integrated Sample Amplification Control for Salivary Point-of-Care Pathogen Testing.
medRxiv. 2023 Oct 3:2023.10.03.23296477. doi: 10.1101/2023.10.03.23296477.
4
Effect of carrier yeast RNAs in the detection of SARS-CoV-2 by RT-LAMP.
MicroPubl Biol. 2023 Sep 20;2023. doi: 10.17912/micropub.biology.000979. eCollection 2023.
5
Recent advances in RNA sample preparation techniques for the detection of SARS-CoV-2 in saliva and gargle.
Trends Analyt Chem. 2023 Aug;165:117107. doi: 10.1016/j.trac.2023.117107. Epub 2023 May 23.
6
Rapid Detection of DNA and RNA Shrimp Viruses Using CRISPR-Based Diagnostics.
Appl Environ Microbiol. 2023 Jun 28;89(6):e0215122. doi: 10.1128/aem.02151-22. Epub 2023 May 23.
9
Saliva-based microfluidic point-of-care diagnostic.
Theranostics. 2023 Jan 31;13(3):1091-1108. doi: 10.7150/thno.78872. eCollection 2023.
10
Saliva-based methods for SARS-CoV-2 testing in low- and middle-income countries.
Bull World Health Organ. 2022 Dec 1;100(12):808-814. doi: 10.2471/BLT.22.288526. Epub 2022 Oct 3.

本文引用的文献

1
SalivaDirect: A simplified and flexible platform to enhance SARS-CoV-2 testing capacity.
Med. 2021 Mar 12;2(3):263-280.e6. doi: 10.1016/j.medj.2020.12.010. Epub 2020 Dec 26.
2
Heat inactivation of the severe acute respiratory syndrome coronavirus 2.
J Biosaf Biosecur. 2021 Jun;3(1):1-3. doi: 10.1016/j.jobb.2020.12.001. Epub 2021 Jan 23.
3
Direct diagnostic testing of SARS-CoV-2 without the need for prior RNA extraction.
Sci Rep. 2021 Jan 28;11(1):2402. doi: 10.1038/s41598-021-81487-y.
5
Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR.
Nat Commun. 2020 Sep 23;11(1):4812. doi: 10.1038/s41467-020-18611-5.
6
The UCSC SARS-CoV-2 Genome Browser.
Nat Genet. 2020 Oct;52(10):991-998. doi: 10.1038/s41588-020-0700-8.
7
SARS-CoV-2 detection using isothermal amplification and a rapid, inexpensive protocol for sample inactivation and purification.
Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24450-24458. doi: 10.1073/pnas.2011221117. Epub 2020 Sep 8.
8
Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2.
N Engl J Med. 2020 Sep 24;383(13):1283-1286. doi: 10.1056/NEJMc2016359. Epub 2020 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验