Inria, Université Côte d'Azur, Epione team, Sophia Antipolis, France.
IHU Liryc, University of Bordeaux, Bordeaux, France.
Europace. 2021 Mar 4;23(23 Suppl 1):i55-i62. doi: 10.1093/europace/euaa391.
Electrocardiographic imaging (ECGI) is a promising tool to map the electrical activity of the heart non-invasively using body surface potentials (BSP). However, it is still challenging due to the mathematically ill-posed nature of the inverse problem to solve. Novel approaches leveraging progress in artificial intelligence could alleviate these difficulties.
We propose a deep learning (DL) formulation of ECGI in order to learn the statistical relation between BSP and cardiac activation. The presented method is based on Conditional Variational AutoEncoders using deep generative neural networks. To quantify the accuracy of this method, we simulated activation maps and BSP data on six cardiac anatomies.We evaluated our model by training it on five different cardiac anatomies (5000 activation maps) and by testing it on a new patient anatomy over 200 activation maps. Due to the probabilistic property of our method, we predicted 10 distinct activation maps for each BSP data. The proposed method is able to generate volumetric activation maps with a good accuracy on the simulated data: the mean absolute error is 9.40 ms with 2.16 ms standard deviation on this testing set.
The proposed formulation of ECGI enables to naturally include imaging information in the estimation of cardiac electrical activity from BSP. It naturally takes into account all the spatio-temporal correlations present in the data. We believe these features can help improve ECGI results.
心电图成像是一种有前途的工具,可使用体表电位 (BSP) 无创地绘制心脏的电活动图。然而,由于逆问题在数学上的不适定性,解决这个问题仍然具有挑战性。利用人工智能进展的新方法可以缓解这些困难。
我们提出了一种心电图成像的深度学习 (DL) 方法,以便学习 BSP 和心脏激活之间的统计关系。所提出的方法基于使用深度生成神经网络的条件变分自动编码器。为了量化该方法的准确性,我们在六种心脏解剖结构上模拟了激活图和 BSP 数据。我们通过在五个不同的心脏解剖结构上进行训练(5000 个激活图)并在 200 个新的患者解剖结构上进行测试来评估我们的模型。由于我们的方法具有概率性质,因此我们为每个 BSP 数据预测了 10 个不同的激活图。该方法能够在模拟数据上以较高的准确性生成体积激活图:在这个测试集上的平均绝对误差为 9.40ms,标准偏差为 2.16ms。
所提出的心电图成像公式能够自然地将成像信息纳入从 BSP 估计心脏电活动的过程中。它自然地考虑了数据中存在的所有时空相关性。我们相信这些特征可以帮助改善心电图成像的结果。