Suppr超能文献

使用先验到注意力网络(P2AN)的人工智能驱动的无创心电图成像用于可穿戴健康监测。

AI-Powered Noninvasive Electrocardiographic Imaging Using the Priori-to-Attention Network (P2AN) for Wearable Health Monitoring.

作者信息

He Shijie, Dong Hanrui, Zhang Xianbin, Millham Richard, Xu Lin, Wu Wanqing

机构信息

School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.

Department of Information Technology, Durban University of Technology, Durban 4001, South Africa.

出版信息

Sensors (Basel). 2025 Mar 14;25(6):1810. doi: 10.3390/s25061810.

Abstract

The rapid development of smart wearable devices has significantly advanced noninvasive, continuous health monitoring, enabling real-time collection of vital biosignals. Electrocardiographic imaging (ECGI), a noninvasive technique that reconstructs transmembrane potential (TMP) from body surface potential, has emerged as a promising method for reflecting cardiac electrical activity. However, the ECG inverse problem's inherent instability has hindered its practical application. To address this, we introduce a novel Priori-to-Attention Network (P2AN) that enhances the stability of ECGI solutions. By leveraging the one-dimensional nature of electrical signals and the body's electrical propagation properties, P2AN uses small-scale convolutions for attention computation, integrating a priori physiological knowledge via cross-attention mechanisms. This approach eliminates the need for clinical TMP measurements and improves solution accuracy through normalization constraints. We evaluate the method's effectiveness in diagnosing myocardial ischemia and ventricular hypertrophy, demonstrating significant improvements in TMP reconstruction and lesion localization. Moreover, P2AN exhibits high robustness in noisy environments, making it highly suitable for integration with wearable electrocardiographic clothing. By improving spatiotemporal accuracy and noise resilience, P2AN offers a promising solution for noninvasive, real-time cardiovascular monitoring using AI-powered wearable devices.

摘要

智能可穿戴设备的迅速发展极大地推动了无创、连续的健康监测,实现了重要生物信号的实时采集。心电图成像(ECGI)是一种从体表电位重建跨膜电位(TMP)的无创技术,已成为反映心脏电活动的一种有前景的方法。然而,心电图逆问题固有的不稳定性阻碍了其实际应用。为了解决这一问题,我们引入了一种新颖的先验到注意力网络(P2AN),以增强ECGI解决方案的稳定性。通过利用电信号的一维特性和人体的电传播特性,P2AN使用小规模卷积进行注意力计算,通过交叉注意力机制整合先验生理知识。这种方法无需临床TMP测量,并通过归一化约束提高了解决方案的准确性。我们评估了该方法在诊断心肌缺血和心室肥大方面的有效性,证明了在TMP重建和病变定位方面有显著改善。此外,P2AN在嘈杂环境中表现出高鲁棒性,使其非常适合与可穿戴心电图服装集成。通过提高时空准确性和抗噪声能力,P2AN为使用人工智能驱动的可穿戴设备进行无创、实时心血管监测提供了一个有前景的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/121f/11945369/e9f6d9a86ebd/sensors-25-01810-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验