Suppr超能文献

相似文献

1
Atlas-based methods for efficient characterization of patient-specific ventricular activation patterns.
Europace. 2021 Mar 4;23(23 Suppl 1):i88-i95. doi: 10.1093/europace/euaa397.
3
A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
Magn Reson Imaging. 2016 Feb;34(2):209-18. doi: 10.1016/j.mri.2015.10.036. Epub 2015 Oct 31.
5
A multimodal spatiotemporal cardiac motion atlas from MR and ultrasound data.
Med Image Anal. 2017 Aug;40:96-110. doi: 10.1016/j.media.2017.06.002. Epub 2017 Jun 13.
6
Constructing a Human Atrial Fibre Atlas.
Ann Biomed Eng. 2021 Jan;49(1):233-250. doi: 10.1007/s10439-020-02525-w. Epub 2020 May 26.
7
A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion.
Med Image Anal. 2015 Dec;26(1):133-45. doi: 10.1016/j.media.2015.08.009. Epub 2015 Sep 1.
8
View-centralized multi-atlas classification for Alzheimer's disease diagnosis.
Hum Brain Mapp. 2015 May;36(5):1847-65. doi: 10.1002/hbm.22741. Epub 2015 Jan 27.
10
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.

引用本文的文献

3
Primer on Machine Learning in Electrophysiology.
Arrhythm Electrophysiol Rev. 2023 Mar 28;12:e06. doi: 10.15420/aer.2022.43. eCollection 2023.
4
A deep learning approach for fully automated cardiac shape modeling in tetralogy of Fallot.
J Cardiovasc Magn Reson. 2023 Feb 27;25(1):15. doi: 10.1186/s12968-023-00924-1.

本文引用的文献

1
Artificial Intelligence in Cardiac Imaging With Statistical Atlases of Cardiac Anatomy.
Front Cardiovasc Med. 2020 Jun 30;7:102. doi: 10.3389/fcvm.2020.00102. eCollection 2020.
2
Electrocardiogram Standards for Children and Young Adults Using -Scores.
Circ Arrhythm Electrophysiol. 2020 Aug;13(8):e008253. doi: 10.1161/CIRCEP.119.008253. Epub 2020 Jul 7.
5
Computational models in cardiology.
Nat Rev Cardiol. 2019 Feb;16(2):100-111. doi: 10.1038/s41569-018-0104-y.
6
Transfer Learning From Simulations on a Reference Anatomy for ECGI in Personalized Cardiac Resynchronization Therapy.
IEEE Trans Biomed Eng. 2019 Feb;66(2):343-353. doi: 10.1109/TBME.2018.2839713. Epub 2018 May 23.
7
Fast uncertainty quantification of activation sequences in patient-specific cardiac electrophysiology meeting clinical time constraints.
Int J Numer Method Biomed Eng. 2018 Jul;34(7):e2985. doi: 10.1002/cnm.2985. Epub 2018 Apr 30.
8
Evaluation of a Rapid Anisotropic Model for ECG Simulation.
Front Physiol. 2017 May 2;8:265. doi: 10.3389/fphys.2017.00265. eCollection 2017.
9
Non-invasive, model-based measures of ventricular electrical dyssynchrony for predicting CRT outcomes.
Europace. 2016 Dec;18(suppl 4):iv104-iv112. doi: 10.1093/europace/euw356.
10
Ventricular structure in ARVC: going beyond volumes as a measure of risk.
J Cardiovasc Magn Reson. 2016 Oct 14;18(1):73. doi: 10.1186/s12968-016-0291-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验