Quaglino A, Pezzuto S, Koutsourelakis P S, Auricchio A, Krause R
Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland.
Technische Universität München, Munich, Germany.
Int J Numer Method Biomed Eng. 2018 Jul;34(7):e2985. doi: 10.1002/cnm.2985. Epub 2018 Apr 30.
We present a fast, patient-specific methodology for uncertainty quantification in electrophysiology, aimed at meeting the time constraints of clinical practitioners. We focus on computing the statistics of the activation map, given the uncertainties associated with the conductivity tensor modeling the fiber orientation in the heart. We use a fast parallel solution method implemented on a graphics processing unit for the eikonal approximation, in order to compute the activation map and to sample the random fiber field with correlation on the basis of geodesic distances. While this enables to perform uncertainty quantification studies with a manageable computational effort, the required time frame still exceeds clinically suitable time expectations. In order to reduce it further by 2 orders of magnitude, we rely on Bayesian multifidelity methods. In particular, we propose a low-fidelity model that is patient-specific and free from the additional training cost associated with reduced models. This is achieved by a sound physics-based simplification of the full eikonal model. The low-fidelity output is then corrected by the standard multifidelity framework. In practice, the complete procedure only requires approximately 100 new runs of our eikonal graphics processing unit solver for producing the sought estimates and their associated credible intervals, enabling a full online analysis in less than 5 minutes.
我们提出了一种快速、针对患者的电生理学不确定性量化方法,旨在满足临床医生的时间限制。考虑到与模拟心脏纤维取向的电导率张量相关的不确定性,我们专注于计算激活图的统计信息。我们使用在图形处理单元上实现的快速并行求解方法进行快速行进法近似,以便计算激活图并基于测地距离对具有相关性的随机纤维场进行采样。虽然这使得能够以可控的计算量进行不确定性量化研究,但所需的时间框架仍超出临床合适的时间预期。为了将其进一步减少两个数量级,我们依赖于贝叶斯多保真度方法。特别是,我们提出了一种针对患者的低保真模型,该模型没有与简化模型相关的额外训练成本。这是通过对完整的快速行进法模型进行基于合理物理的简化来实现的。然后,低保真输出由标准的多保真度框架进行校正。在实践中,完整的过程仅需要对我们的快速行进法图形处理单元求解器进行大约100次新的运行,即可生成所需的估计值及其相关的可信区间,从而能够在不到5分钟的时间内进行完整的在线分析。