Suppr超能文献

基于F统计值的脑电信号分析特征选择

Feature Selection Using F-statistic Values for EEG Signal Analysis.

作者信息

Peng Genchang, Nourani Mehrdad, Harvey Jay, Dave Hina

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5963-5966. doi: 10.1109/EMBC44109.2020.9176434.

Abstract

Electroencephalography (EEG) is a highly complex and non-stationary signal that reflects the cortical electric activity. Feature selection and analysis of EEG for various purposes, such as epileptic seizure detection, are highly in demand. This paper presents an approach to enhance classification performance by selecting discriminative features from a combined feature set consisting of frequency domain and entropy based features. For each EEG channel, nine different features are extracted, including six sub-band spectral powers and three entropy values (sample, permutation and spectral entropy). Features are then ranked across all channels using F-statistic values and selected for SVM classification. Experimentation using CHB-MIT dataset shows that our method achieves average sensitivity, specificity and F-1 score of 92.63%, 99.72% and 91.21%, respectively.

摘要

脑电图(EEG)是一种高度复杂且非平稳的信号,它反映了皮层电活动。出于各种目的,如癫痫发作检测,对脑电图进行特征选择和分析的需求非常高。本文提出了一种方法,通过从由基于频域和熵的特征组成的组合特征集中选择判别性特征来提高分类性能。对于每个脑电图通道,提取九个不同的特征,包括六个子带谱功率和三个熵值(样本熵、排列熵和谱熵)。然后使用F统计值对所有通道的特征进行排序,并选择用于支持向量机分类。使用CHB-MIT数据集进行的实验表明,我们的方法分别实现了92.63%、99.72%和91.21%的平均灵敏度、特异性和F1分数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验