Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA.
Invicro LLC, Dry Dock Road, Boston, MA, USA.
Sci Rep. 2021 Mar 22;11(1):6559. doi: 10.1038/s41598-021-85971-3.
Echocardiography is a widely used and clinically translatable imaging modality for the evaluation of cardiac structure and function in preclinical drug discovery and development. Echocardiograms are among the first in vivo diagnostic tools utilized to evaluate the heart due to its relatively low cost, high throughput acquisition, and non-invasive nature; however lengthy manual image analysis, intra- and inter-operator variability, and subjective image analysis presents a challenge for reproducible data generation in preclinical research. To combat the image-processing bottleneck and address both variability and reproducibly challenges, we developed a semi-automated analysis algorithm workflow to analyze long- and short-axis murine left ventricle (LV) ultrasound images. The long-axis B-mode algorithm executes a script protocol that is trained using a reference library of 322 manually segmented LV ultrasound images. The short-axis script was engineered to analyze M-mode ultrasound images in a semi-automated fashion using a pixel intensity evaluation approach, allowing analysts to place two seed-points to triangulate the local maxima of LV wall boundary annotations. Blinded operator evaluation of the semi-automated analysis tool was performed and compared to the current manual segmentation methodology for testing inter- and intra-operator reproducibility at baseline and after a pharmacologic challenge. Comparisons between manual and semi-automatic derivation of LV ejection fraction resulted in a relative difference of 1% for long-axis (B-mode) images and 2.7% for short-axis (M-mode) images. Our semi-automatic workflow approach reduces image analysis time and subjective bias, as well as decreases inter- and intra-operator variability, thereby enhancing throughput and improving data quality for pre-clinical in vivo studies that incorporate cardiac structure and function endpoints.
超声心动图是一种广泛应用于临床的影像学方法,可用于评估临床前药物发现和开发中的心脏结构和功能。由于其成本相对较低、高通量采集和非侵入性,超声心动图是最早用于评估心脏的体内诊断工具之一;然而,由于图像分析过程冗长、操作者间和操作者内的变异性以及主观的图像分析,使得在临床前研究中难以生成可重复的数据。为了解决图像处理瓶颈以及变异性和可重复性问题,我们开发了一种半自动分析算法工作流程,用于分析长轴和短轴鼠类左心室(LV)超声图像。长轴 B 模式算法执行一个脚本协议,该协议使用手动分割的 322 个 LV 超声图像的参考库进行训练。短轴脚本采用像素强度评估方法,以半自动方式分析 M 模式超声图像,允许分析人员放置两个种子点来三角化 LV 壁边界注释的局部最大值。对半自动分析工具的盲法操作员评估,并与当前的手动分割方法进行比较,以测试基线和药理学挑战后的操作员间和操作员内的可重复性。手动和半自动推导 LV 射血分数的比较结果显示,长轴(B 模式)图像的相对差异为 1%,短轴(M 模式)图像的相对差异为 2.7%。我们的半自动工作流程方法减少了图像分析时间和主观偏差,同时降低了操作者间和操作者内的变异性,从而提高了包含心脏结构和功能终点的临床前体内研究的通量和数据质量。