IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2460-2471. doi: 10.1109/TUFFC.2021.3068156. Epub 2021 Jun 29.
Segmentation and mutant classification of high-frequency ultrasound (HFU) mouse embryo brain ventricle (BV) and body images can provide valuable information for developmental biologists. However, manual segmentation and identification of BV and body requires substantial time and expertise. This article proposes an accurate, efficient and explainable deep learning pipeline for automatic segmentation and classification of the BV and body. For segmentation, a two-stage framework is implemented. The first stage produces a low-resolution segmentation map, which is then used to crop a region of interest (ROI) around the target object and serve as the probability map of the autocontext input for the second-stage fine-resolution refinement network. The segmentation then becomes tractable on high-resolution 3-D images without time-consuming sliding windows. The proposed segmentation method significantly reduces inference time (102.36-0.09 s/volume ≈ 1000× faster) while maintaining high accuracy comparable to previous sliding-window approaches. Based on the BV and body segmentation map, a volumetric convolutional neural network (CNN) is trained to perform a mutant classification task. Through backpropagating the gradients of the predictions to the input BV and body segmentation map, the trained classifier is found to largely focus on the region where the Engrailed-1 (En1) mutation phenotype is known to manifest itself. This suggests that gradient backpropagation of deep learning classifiers may provide a powerful tool for automatically detecting unknown phenotypes associated with a known genetic mutation.
高频超声(HFU)小鼠胚胎脑室(BV)和体部图像的分割和突变分类可为发育生物学家提供有价值的信息。然而,BV 和体部的手动分割和识别需要大量的时间和专业知识。本文提出了一种准确、高效且可解释的深度学习流水线,用于自动分割和分类 BV 和体部。对于分割,实现了两阶段框架。第一阶段生成低分辨率分割图,然后使用该分割图裁剪目标对象周围的感兴趣区域(ROI),并作为第二阶段精细分辨率细化网络的自上下文输入的概率图。然后,分割可以在高分辨率 3D 图像上进行,而无需耗时的滑动窗口。所提出的分割方法在保持与以前的滑动窗口方法相当的高精度的同时,显著减少了推断时间(102.36-0.09 s/volume ≈ 1000 倍)。基于 BV 和体部分割图,训练体积卷积神经网络(CNN)执行突变分类任务。通过将预测的梯度反向传播到输入的 BV 和体部分割图,发现训练有素的分类器主要关注已知表现出 Engrailed-1(En1)突变表型的区域。这表明深度学习分类器的梯度反向传播可能为自动检测与已知基因突变相关的未知表型提供了一种强大的工具。