Suppr超能文献

一种用于分割、分类和可视化小鼠胚胎三维高频超声图像的深度学习方法。

A Deep Learning Approach for Segmentation, Classification, and Visualization of 3-D High-Frequency Ultrasound Images of Mouse Embryos.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2460-2471. doi: 10.1109/TUFFC.2021.3068156. Epub 2021 Jun 29.

Abstract

Segmentation and mutant classification of high-frequency ultrasound (HFU) mouse embryo brain ventricle (BV) and body images can provide valuable information for developmental biologists. However, manual segmentation and identification of BV and body requires substantial time and expertise. This article proposes an accurate, efficient and explainable deep learning pipeline for automatic segmentation and classification of the BV and body. For segmentation, a two-stage framework is implemented. The first stage produces a low-resolution segmentation map, which is then used to crop a region of interest (ROI) around the target object and serve as the probability map of the autocontext input for the second-stage fine-resolution refinement network. The segmentation then becomes tractable on high-resolution 3-D images without time-consuming sliding windows. The proposed segmentation method significantly reduces inference time (102.36-0.09 s/volume ≈ 1000× faster) while maintaining high accuracy comparable to previous sliding-window approaches. Based on the BV and body segmentation map, a volumetric convolutional neural network (CNN) is trained to perform a mutant classification task. Through backpropagating the gradients of the predictions to the input BV and body segmentation map, the trained classifier is found to largely focus on the region where the Engrailed-1 (En1) mutation phenotype is known to manifest itself. This suggests that gradient backpropagation of deep learning classifiers may provide a powerful tool for automatically detecting unknown phenotypes associated with a known genetic mutation.

摘要

高频超声(HFU)小鼠胚胎脑室(BV)和体部图像的分割和突变分类可为发育生物学家提供有价值的信息。然而,BV 和体部的手动分割和识别需要大量的时间和专业知识。本文提出了一种准确、高效且可解释的深度学习流水线,用于自动分割和分类 BV 和体部。对于分割,实现了两阶段框架。第一阶段生成低分辨率分割图,然后使用该分割图裁剪目标对象周围的感兴趣区域(ROI),并作为第二阶段精细分辨率细化网络的自上下文输入的概率图。然后,分割可以在高分辨率 3D 图像上进行,而无需耗时的滑动窗口。所提出的分割方法在保持与以前的滑动窗口方法相当的高精度的同时,显著减少了推断时间(102.36-0.09 s/volume ≈ 1000 倍)。基于 BV 和体部分割图,训练体积卷积神经网络(CNN)执行突变分类任务。通过将预测的梯度反向传播到输入的 BV 和体部分割图,发现训练有素的分类器主要关注已知表现出 Engrailed-1(En1)突变表型的区域。这表明深度学习分类器的梯度反向传播可能为自动检测与已知基因突变相关的未知表型提供了一种强大的工具。

相似文献

1
A Deep Learning Approach for Segmentation, Classification, and Visualization of 3-D High-Frequency Ultrasound Images of Mouse Embryos.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2460-2471. doi: 10.1109/TUFFC.2021.3068156. Epub 2021 Jun 29.
2
DEEP MOUSE: AN END-TO-END AUTO-CONTEXT REFINEMENT FRAMEWORK FOR BRAIN VENTRICLE & BODY SEGMENTATION IN EMBRYONIC MICE ULTRASOUND VOLUMES.
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:122-126. doi: 10.1109/isbi45749.2020.9098387. Epub 2020 May 22.
3
DEEP BV: A FULLY AUTOMATED SYSTEM FOR BRAIN VENTRICLE LOCALIZATION AND SEGMENTATION IN 3D ULTRASOUND IMAGES OF EMBRYONIC MICE.
IEEE Signal Process Med Biol Symp. 2018 Dec;2018. doi: 10.1109/SPMB.2018.8615610. Epub 2019 Jan 17.
5
Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
Med Phys. 2020 Jun;47(6):2413-2426. doi: 10.1002/mp.14134. Epub 2020 Apr 8.
6
A Hybrid Approach Based on Deep CNN and Machine Learning Classifiers for the Tumor Segmentation and Classification in Brain MRI.
Comput Math Methods Med. 2022 Aug 5;2022:6446680. doi: 10.1155/2022/6446680. eCollection 2022.
7
Three-stage segmentation of lung region from CT images using deep neural networks.
BMC Med Imaging. 2021 Jul 15;21(1):112. doi: 10.1186/s12880-021-00640-1.

引用本文的文献

1
Dental bur detection system based on asymmetric double convolution and adaptive feature fusion.
Sci Rep. 2024 Dec 30;14(1):31874. doi: 10.1038/s41598-024-83241-6.
2
From beasts to bytes: Revolutionizing zoological research with artificial intelligence.
Zool Res. 2023 Nov 18;44(6):1115-1131. doi: 10.24272/j.issn.2095-8137.2023.263.
4
Longitudinal in Utero Analysis of Engrailed-1 Knockout Mouse Embryonic Phenotypes Using High-Frequency Ultrasound.
Ultrasound Med Biol. 2023 Jan;49(1):356-367. doi: 10.1016/j.ultrasmedbio.2022.09.008. Epub 2022 Oct 22.

本文引用的文献

1
DEEP MOUSE: AN END-TO-END AUTO-CONTEXT REFINEMENT FRAMEWORK FOR BRAIN VENTRICLE & BODY SEGMENTATION IN EMBRYONIC MICE ULTRASOUND VOLUMES.
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:122-126. doi: 10.1109/isbi45749.2020.9098387. Epub 2020 May 22.
2
Simultaneous left atrium anatomy and scar segmentations via deep learning in multiview information with attention.
Future Gener Comput Syst. 2020 Jun;107:215-228. doi: 10.1016/j.future.2020.02.005.
3
MV-RAN: Multiview recurrent aggregation network for echocardiographic sequences segmentation and full cardiac cycle analysis.
Comput Biol Med. 2020 May;120:103728. doi: 10.1016/j.compbiomed.2020.103728. Epub 2020 Mar 24.
4
Thorax-Net: An Attention Regularized Deep Neural Network for Classification of Thoracic Diseases on Chest Radiography.
IEEE J Biomed Health Inform. 2020 Feb;24(2):475-485. doi: 10.1109/JBHI.2019.2928369. Epub 2019 Jul 12.
5
DEEP BV: A FULLY AUTOMATED SYSTEM FOR BRAIN VENTRICLE LOCALIZATION AND SEGMENTATION IN 3D ULTRASOUND IMAGES OF EMBRYONIC MICE.
IEEE Signal Process Med Biol Symp. 2018 Dec;2018. doi: 10.1109/SPMB.2018.8615610. Epub 2019 Jan 17.
6
AUTOMATIC BODY LOCALIZATION AND BRAIN VENTRICLE SEGMENTATION IN 3D HIGH FREQUENCY ULTRASOUND IMAGES OF MOUSE EMBRYOS.
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:635-639. doi: 10.1109/ISBI.2018.8363655. Epub 2018 May 24.
7
MRI to Assess Neurological Function.
Curr Protoc Mouse Biol. 2018 Jun;8(2):e44. doi: 10.1002/cpmo.44. Epub 2018 May 22.
8
An application of cascaded 3D fully convolutional networks for medical image segmentation.
Comput Med Imaging Graph. 2018 Jun;66:90-99. doi: 10.1016/j.compmedimag.2018.03.001. Epub 2018 Mar 16.
9
A survey on deep learning in medical image analysis.
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
10
VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images.
Neuroimage. 2018 Apr 15;170:446-455. doi: 10.1016/j.neuroimage.2017.04.041. Epub 2017 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验