Yang Guang, Chen Jun, Gao Zhifan, Li Shuo, Ni Hao, Angelini Elsa, Wong Tom, Mohiaddin Raad, Nyktari Eva, Wage Ricardo, Xu Lei, Zhang Yanping, Du Xiuquan, Zhang Heye, Firmin David, Keegan Jennifer
Cardiovascular Research Centre, Royal Brompton Hospital, SW3 6NP, London, UK.
National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK.
Future Gener Comput Syst. 2020 Jun;107:215-228. doi: 10.1016/j.future.2020.02.005.
Three-dimensional late gadolinium enhanced (LGE) cardiac MR (CMR) of left atrial scar in patients with atrial fibrillation (AF) has recently emerged as a promising technique to stratify patients, to guide ablation therapy and to predict treatment success. This requires a segmentation of the high intensity scar tissue and also a segmentation of the left atrium (LA) anatomy, the latter usually being derived from a separate bright-blood acquisition. Performing both segmentations automatically from a single 3D LGE CMR acquisition would eliminate the need for an additional acquisition and avoid subsequent registration issues. In this paper, we propose a joint segmentation method based on multiview two-task (MVTT) recursive attention model working directly on 3D LGE CMR images to segment the LA (and proximal pulmonary veins) and to delineate the scar on the same dataset. Using our MVTT recursive attention model, both the LA anatomy and scar can be segmented accurately (mean Dice score of 93% for the LA anatomy and 87% for the scar segmentations) and efficiently ( 0.27 s to simultaneously segment the LA anatomy and scars directly from the 3D LGE CMR dataset with 60-68 2D slices). Compared to conventional unsupervised learning and other state-of-the-art deep learning based methods, the proposed MVTT model achieved excellent results, leading to an automatic generation of a patient-specific anatomical model combined with scar segmentation for patients in AF.
心房颤动(AF)患者左心房瘢痕的三维延迟钆增强(LGE)心脏磁共振成像(CMR)最近已成为一种很有前景的技术,可用于对患者进行分层、指导消融治疗并预测治疗成功率。这需要对高强度瘢痕组织进行分割,同时也需要对左心房(LA)解剖结构进行分割,后者通常来自单独的亮血采集。从单个3D LGE CMR采集中自动执行这两种分割将消除额外采集的需要,并避免后续的配准问题。在本文中,我们提出了一种基于多视图双任务(MVTT)递归注意力模型的联合分割方法,该模型直接作用于3D LGE CMR图像,以在同一数据集中分割LA(和近端肺静脉)并描绘瘢痕。使用我们的MVTT递归注意力模型,可以准确(LA解剖结构的平均Dice分数为93%,瘢痕分割的平均Dice分数为87%)且高效地(从具有60 - 68个2D切片的3D LGE CMR数据集中直接同时分割LA解剖结构和瘢痕需要0.27秒)分割LA解剖结构和瘢痕。与传统的无监督学习和其他基于深度学习的最新方法相比,所提出的MVTT模型取得了优异的结果,从而能够自动生成针对AF患者的结合瘢痕分割的患者特异性解剖模型。