Suppr超能文献

一种用于混合监督医学图像分割的新型双网络架构。

A novel dual-network architecture for mixed-supervised medical image segmentation.

机构信息

Department of Automation, Tsinghua University, Beijing 100084, China; Department of Radiology, Brigham and Women's Hospital, Boston 02115, USA.

Department of Radiology, Huadong Hospital affiliated to Fudan University, Shanghai 200040, China.

出版信息

Comput Med Imaging Graph. 2021 Apr;89:101841. doi: 10.1016/j.compmedimag.2020.101841. Epub 2021 Mar 3.

Abstract

In medical image segmentation tasks, deep learning-based models usually require densely and precisely annotated datasets to train, which are time-consuming and expensive to prepare. One possible solution is to train with the mixed-supervised dataset, where only a part of data is densely annotated with segmentation map and the rest is annotated with some weak form, such as bounding box. In this paper, we propose a novel network architecture called Mixed-Supervised Dual-Network (MSDN), which consists of two separate networks for the segmentation and detection tasks respectively, and a series of connection modules between the layers of the two networks. These connection modules are used to extract and transfer useful information from the detection task to help the segmentation task. We exploit a variant of a recently designed technique called 'Squeeze and Excitation' in the connection module to boost the information transfer between the two tasks. Compared with existing model with shared backbone and multiple branches, our model has flexible and trainable feature sharing fashion and thus is more effective and stable. We conduct experiments on 4 medical image segmentation datasets, and experiment results show that the proposed MSDN model outperforms multiple baselines.

摘要

在医学图像分割任务中,基于深度学习的模型通常需要密集且精确标注的数据集进行训练,而这些数据集的准备既耗时又昂贵。一种可能的解决方案是使用混合监督数据集进行训练,其中只有一部分数据具有密集的分割图标注,而其余部分则具有一些较弱的标注形式,例如边界框。在本文中,我们提出了一种名为混合监督双网络(MSDN)的新型网络架构,它由分别用于分割和检测任务的两个独立网络以及两个网络的层之间的一系列连接模块组成。这些连接模块用于从检测任务中提取和传递有用信息,以帮助分割任务。我们在连接模块中利用了最近设计的一种名为“挤压和激励”的技术的变体,以增强两个任务之间的信息传递。与具有共享主干和多个分支的现有模型相比,我们的模型具有灵活和可训练的特征共享方式,因此更加有效和稳定。我们在 4 个医学图像分割数据集上进行了实验,实验结果表明,所提出的 MSDN 模型优于多个基线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c46/8084108/8faaf273e4a8/nihms-1694382-f0001.jpg

相似文献

1
A novel dual-network architecture for mixed-supervised medical image segmentation.一种用于混合监督医学图像分割的新型双网络架构。
Comput Med Imaging Graph. 2021 Apr;89:101841. doi: 10.1016/j.compmedimag.2020.101841. Epub 2021 Mar 3.
2
Mixed-Supervised Dual-Network for Medical Image Segmentation.用于医学图像分割的混合监督双网络
Med Image Comput Comput Assist Interv. 2019 Oct;11765:192-200. doi: 10.1007/978-3-030-32245-8_22. Epub 2019 Oct 10.
4
'Squeeze & excite' guided few-shot segmentation of volumetric images.“Squeeze & excite”引导的容积图像少样本分割。
Med Image Anal. 2020 Jan;59:101587. doi: 10.1016/j.media.2019.101587. Epub 2019 Oct 13.
6
GC-Net: Global context network for medical image segmentation.GC-Net:用于医学图像分割的全局上下文网络。
Comput Methods Programs Biomed. 2020 Jul;190:105121. doi: 10.1016/j.cmpb.2019.105121. Epub 2019 Oct 4.

本文引用的文献

1
Mixed-Supervised Dual-Network for Medical Image Segmentation.用于医学图像分割的混合监督双网络
Med Image Comput Comput Assist Interv. 2019 Oct;11765:192-200. doi: 10.1007/978-3-030-32245-8_22. Epub 2019 Oct 10.
2
'Squeeze & excite' guided few-shot segmentation of volumetric images.“Squeeze & excite”引导的容积图像少样本分割。
Med Image Anal. 2020 Jan;59:101587. doi: 10.1016/j.media.2019.101587. Epub 2019 Oct 13.
3
Deep learning with mixed supervision for brain tumor segmentation.用于脑肿瘤分割的混合监督深度学习。
J Med Imaging (Bellingham). 2019 Jul;6(3):034002. doi: 10.1117/1.JMI.6.3.034002. Epub 2019 Aug 10.
5
Constrained-CNN losses for weakly supervised segmentation.约束卷积神经网络损失的弱监督分割。
Med Image Anal. 2019 May;54:88-99. doi: 10.1016/j.media.2019.02.009. Epub 2019 Feb 13.
8
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验