Suppr超能文献

物联网医疗设备与急救车辆之间的节能通信,以改善患者护理。

Energy-efficient communication between IoMT devices and emergency vehicles for improved patient care.

作者信息

Osman Radwa Ahmed

机构信息

Basic and Applied Science Institute, College of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.

出版信息

PLoS One. 2025 Aug 28;20(8):e0330695. doi: 10.1371/journal.pone.0330695. eCollection 2025.

Abstract

The rising integration of emergency healthcare services with the Internet of Medical Things (IoMT) creates a significant opportunity to improve real-time communication between patients and emergency vehicles like ambulances. Fast and reliable data interchange is crucial in an emergency, especially for those with chronic conditions who rely on wearable IoMT devices to monitor vital health signs. However, establishing consistent communication in real-world conditions such as restricted signal strength, changing distances, and power constraints remains a major difficulty. This paper provides an intelligent communication framework that uses a one-dimensional deep convolutional neural network (1D-CNN) and Lagrange optimization techniques to improve energy efficiency and data transmission speeds. Unlike many earlier models, our technique takes into consideration real-world characteristics such as signal-to-interference-plus-noise ratio (SINR), transmission power, and the distance between the ambulance and the patient's device. The primary goal is to identify the ideal communication distance for dependable, energy-efficient data transfer during urgent emergency situations. The findings show that the suggested system enhances communication reliability, consumes less energy, and increases the possible data rate. This framework accelerates, smartens, and strengthens emergency healthcare communication systems by combining deep learning and mathematical optimization. These findings contribute to the progress of intelligent healthcare infrastructure, opening the way for responsive and dependable emergency services that can adapt to changing conditions while maintaining high performance and patient safety.

摘要

紧急医疗服务与医疗物联网(IoMT)日益融合,为改善患者与救护车等应急车辆之间的实时通信创造了重大机遇。在紧急情况下,快速可靠的数据交换至关重要,尤其是对于那些依赖可穿戴IoMT设备监测重要健康体征的慢性病患者。然而,在诸如信号强度受限、距离变化和功率限制等现实世界条件下建立一致的通信仍然是一个主要难题。本文提供了一种智能通信框架,该框架使用一维深度卷积神经网络(1D-CNN)和拉格朗日优化技术来提高能源效率和数据传输速度。与许多早期模型不同,我们的技术考虑了诸如信号干扰加噪声比(SINR)、发射功率以及救护车与患者设备之间的距离等现实世界特征。主要目标是确定在紧急情况下进行可靠、节能数据传输的理想通信距离。研究结果表明,所提出的系统提高了通信可靠性,降低了能耗,并提高了可能的数据速率。该框架通过结合深度学习和数学优化,加速、智能化并强化了紧急医疗通信系统。这些发现有助于智能医疗基础设施的发展,为能够适应不断变化的条件同时保持高性能和患者安全的响应式和可靠紧急服务开辟了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/084e/12393732/e6d6998f8f74/pone.0330695.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验