Department of Computer Science, The University of Western Ontario, London, Ontario, Canada.
Brain and Mind Institute, The University of Western Ontario, London, Ontario, Canada.
PLoS Comput Biol. 2021 Mar 24;17(3):e1008775. doi: 10.1371/journal.pcbi.1008775. eCollection 2021 Mar.
While vision evokes a dense network of feedforward and feedback neural processes in the brain, visual processes are primarily modeled with feedforward hierarchical neural networks, leaving the computational role of feedback processes poorly understood. Here, we developed a generative autoencoder neural network model and adversarially trained it on a categorically diverse data set of images. We hypothesized that the feedback processes in the ventral visual pathway can be represented by reconstruction of the visual information performed by the generative model. We compared representational similarity of the activity patterns in the proposed model with temporal (magnetoencephalography) and spatial (functional magnetic resonance imaging) visual brain responses. The proposed generative model identified two segregated neural dynamics in the visual brain. A temporal hierarchy of processes transforming low level visual information into high level semantics in the feedforward sweep, and a temporally later dynamics of inverse processes reconstructing low level visual information from a high level latent representation in the feedback sweep. Our results append to previous studies on neural feedback processes by presenting a new insight into the algorithmic function and the information carried by the feedback processes in the ventral visual pathway.
虽然视觉在大脑中引发了密集的前馈和反馈神经网络过程网络,但视觉过程主要是使用前馈分层神经网络进行建模的,这使得反馈过程的计算作用仍未得到很好的理解。在这里,我们开发了一个生成式自动编码器神经网络模型,并在一个具有类别多样性的图像数据集上对其进行对抗性训练。我们假设腹侧视觉通路中的反馈过程可以通过生成模型对视觉信息的重建来表示。我们比较了所提出的模型中的活动模式的表示相似性与时间(脑磁图)和空间(功能磁共振成像)视觉大脑反应。所提出的生成模型在视觉大脑中识别出两种分离的神经动力学。前馈扫描中,从低级视觉信息转换为高级语义的过程的时间层次结构,以及反馈扫描中从高级潜在表示重建低级视觉信息的逆过程的时间后期动力学。我们的结果通过为腹侧视觉通路中的反馈过程的算法功能和所携带的信息提供新的见解,补充了之前关于神经反馈过程的研究。