Xie Yixin, Du Dan, Karki Chitra B, Guo Wenhan, Lopez-Hernandez Alan E, Sun Shengjie, Juarez Brenda Y, Li Haotian, Wang Jun, Li Lin
Computational Science Program, University of Texas at El Paso, El Paso, TX.
Department of Physics, University of Texas at El Paso, El Paso, TX.
Comput Sci Eng. 2020 Nov-Dec;22(6):21-29. doi: 10.1109/MCSE.2020.3015511. Epub 2020 Aug 11.
A large population in the world has been infected by COVID-19. Understanding the mechanisms of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is important for management and treatment of the COVID-19. When it comes to the infection process, one of the most important proteins in SARS-CoV-2 is the spike (S) protein, which is able to bind to human Angiotensin-Converting Enzyme 2 (ACE2) and initializes the entry of the host cell. In this study, we implemented multi-scale computational approaches to study the electrostatic features of the interfaces of the SARS-CoV-2 S protein Receptor Binding Domain (RBD) and ACE2. The simulations and analyses were performed on high-performance computing resources in Texas Advanced Computing Center (TACC). Our study identified key residues on the SARS-CoV-2, which can be used as targets for future drug design. The results shed lights on future drug design and therapeutic targets for COVID-19.
世界上大量人口已感染新型冠状病毒肺炎(COVID-19)。了解严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的机制对于COVID-19的管理和治疗至关重要。在感染过程中,SARS-CoV-2中最重要的蛋白质之一是刺突(S)蛋白,它能够与人血管紧张素转换酶2(ACE2)结合并启动宿主细胞的进入。在本研究中,我们采用多尺度计算方法来研究SARS-CoV-2 S蛋白受体结合域(RBD)与ACE2界面的静电特征。模拟和分析在德克萨斯高级计算中心(TACC)的高性能计算资源上进行。我们的研究确定了SARS-CoV-2上的关键残基,可作为未来药物设计的靶点。这些结果为COVID-19的未来药物设计和治疗靶点提供了线索。