Balachandrasekaran Arvind, Jacob Mathews
Department of Electrical and Computer Engineering, University of Iowa, IA, USA.
Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:1-4. doi: 10.1109/isbi.2017.7950454. Epub 2017 Jun 19.
We propose a structured low rank matrix completion algorithm to recover a time series of images consisting of linear combination of exponential parameters at every pixel, from undersampled Fourier measurements. The spatial smoothness of these parameters is exploited along with the exponential structure of the time series at every pixel, to derive an annihilation relation in the - domain. This annihilation relation translates into a structured low rank matrix formed from the - samples. We demonstrate the algorithm in the parameter mapping setting and show significant improvement over state of the art methods.
我们提出一种结构化低秩矩阵补全算法,用于从欠采样傅里叶测量中恢复由每个像素处指数参数的线性组合构成的图像时间序列。利用这些参数的空间平滑性以及每个像素处时间序列的指数结构,在频域中推导一个湮灭关系。这个湮灭关系转化为由频域样本形成的结构化低秩矩阵。我们在参数映射设置中演示了该算法,并表明其相对于现有方法有显著改进。