Suppr超能文献

带限曲面上噪声点的恢复:核方法再解释

RECOVERY OF NOISY POINTS ON BANDLIMITED SURFACES: KERNEL METHODS RE-EXPLAINED.

作者信息

Poddar Sunrita, Jacob Mathews

机构信息

Department of Electrical and Computer Engineering, University of Iowa, IA, USA.

出版信息

Proc IEEE Int Conf Acoust Speech Signal Process. 2018 Apr;2018:4024-4028. doi: 10.1109/icassp.2018.8462186. Epub 2018 Sep 13.

Abstract

We introduce a continuous domain framework for the recovery of points on a surface in high dimensional space, represented as the zero-level set of a bandlimited function. We show that the exponential maps of the points on the surface satisfy annihilation relations, implying that they lie in a finite dimensional subspace. The subspace properties are used to derive sampling conditions, which will guarantee the perfect recovery of the surface from finite number of points. We rely on nuclear norm minimization to exploit the low-rank structure of the maps to recover the points from noisy measurements. Since the direct estimation of the surface is computationally prohibitive in very high dimensions, we propose an iterative reweighted algorithm using the "kernel trick". The iterative algorithm reveals deep links to Laplacian based algorithms widely used in graph signal processing; the theory and the sampling conditions can serve as a basis for discrete-continuous domain processing of signals on a graph.

摘要

我们引入了一个连续域框架,用于恢复高维空间中曲面上的点,这些点被表示为一个带限函数的零水平集。我们证明了曲面上点的指数映射满足湮灭关系,这意味着它们位于一个有限维子空间中。利用子空间性质推导出采样条件,该条件将保证从有限数量的点中完美恢复曲面。我们依靠核范数最小化来利用映射的低秩结构,以便从有噪声的测量中恢复点。由于在非常高的维度下直接估计曲面在计算上是不可行的,我们提出了一种使用“核技巧”的迭代重加权算法。该迭代算法揭示了与广泛应用于图信号处理的基于拉普拉斯的算法的深层联系;该理论和采样条件可作为图上信号离散 - 连续域处理的基础。

相似文献

1
RECOVERY OF NOISY POINTS ON BANDLIMITED SURFACES: KERNEL METHODS RE-EXPLAINED.带限曲面上噪声点的恢复:核方法再解释
Proc IEEE Int Conf Acoust Speech Signal Process. 2018 Apr;2018:4024-4028. doi: 10.1109/icassp.2018.8462186. Epub 2018 Sep 13.
2
RECOVERY OF POINT CLOUDS ON SURFACES: APPLICATION TO IMAGE RECONSTRUCTION.曲面上点云的恢复:在图像重建中的应用
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1272-1275. doi: 10.1109/isbi.2018.8363803. Epub 2018 May 24.
4
SAMPLING OF SURFACES AND LEARNING FUNCTIONS IN HIGH DIMENSIONS.高维空间中曲面的采样与学习函数
Proc IEEE Int Conf Acoust Speech Signal Process. 2020 May;2020:8354-8358. doi: 10.1109/icassp40776.2020.9053876. Epub 2020 May 14.
6
Robust Elastic-Net Subspace Representation.稳健的弹性网络子空间表示
IEEE Trans Image Process. 2016 Sep;25(9):4245-4259. doi: 10.1109/TIP.2016.2588321. Epub 2016 Jul 7.

引用本文的文献

3
SAMPLING OF SURFACES AND LEARNING FUNCTIONS IN HIGH DIMENSIONS.高维空间中曲面的采样与学习函数
Proc IEEE Int Conf Acoust Speech Signal Process. 2020 May;2020:8354-8358. doi: 10.1109/icassp40776.2020.9053876. Epub 2020 May 14.

本文引用的文献

4
A Fast Algorithm for Convolutional Structured Low-rank Matrix Recovery.一种用于卷积结构化低秩矩阵恢复的快速算法。
IEEE Trans Comput Imaging. 2017 Dec;3(4):535-550. doi: 10.1109/TCI.2017.2721819. Epub 2017 Jan 30.
5
Recovery of Damped Exponentials Using Structured Low Rank Matrix Completion.使用结构化低秩矩阵补全恢复阻尼指数
IEEE Trans Med Imaging. 2017 Oct;36(10):2087-2098. doi: 10.1109/TMI.2017.2726995. Epub 2017 Jul 14.
7
Dynamic MRI Using SmooThness Regularization on Manifolds (SToRM).基于流形平滑正则化的动态磁共振成像(SToRM)。
IEEE Trans Med Imaging. 2016 Apr;35(4):1106-15. doi: 10.1109/TMI.2015.2509245. Epub 2015 Dec 17.
9
Nonlocal regularization of inverse problems: a unified variational framework.非局部正则化反问题:一个统一的变分框架。
IEEE Trans Image Process. 2013 Aug;22(8):3192-203. doi: 10.1109/TIP.2012.2216278. Epub 2012 Sep 20.
10
BM3D frames and variational image deblurring.BM3D 帧和变分图像去模糊。
IEEE Trans Image Process. 2012 Apr;21(4):1715-28. doi: 10.1109/TIP.2011.2176954. Epub 2011 Nov 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验